Citation: | CHEN R, QU J, MEN X, et al. Isolation, Identification, and Characterization of Omethoate-degrading Pseudomonas abietaniphila ZZY-C13-1-9 [J]. Fujian Journal of Agricultural Sciences,2020,35(8):869−875 doi: 10.19303/j.issn.1008-0384.2020.08.009 |
[1] |
SCOY A, PENNELL A, ZHANG X Y. Environmental fate and toxicology of dimethoate [J]. Reviews of Environmental Contamination and Toxicology, 2016, 237: 53−70. doi: 10.1007/978-3-319-23573-8_3
|
[2] |
和文祥, 郑粉莉, 田海霞. 氧化乐果对土壤酶活性的影响 [J]. 中国农业科学, 2009, 42(12):4282−4287. doi: 10.3864/j.issn.0578-1752.2009.12.020
HE W X, ZHENG F L, TIAN H X. Effect of omethoate on soil enzyme activities [J]. Scientia Agricultura Sinica, 2009, 42(12): 4282−4287.(in Chinese) doi: 10.3864/j.issn.0578-1752.2009.12.020
|
[3] |
CALATAYUD-VERNICH P, CALATAYUD F, SIMÓ E, et al. A two-year monitoring of pesticide hazard in-hive: High honey bee mortality rates during insecticide poisoning episodes in apiaries located near agricultural settings [J]. Chemosphere, 2019, 232: 471−480. doi: 10.1016/j.chemosphere.2019.05.170
|
[4] |
宋志慧, 刘冰. 氧化乐果对小球藻的毒性研究 [J]. 生态毒理学报, 2014, 9(3):483−489.
SONG Z H, LIU B. Toxic effects of omethoate on Chlorella vulgaris [J]. Asian Journal of Ecotoxicology, 2014, 9(3): 483−489.(in Chinese)
|
[5] |
张元园. 氧化乐果对斑马鱼的毒性作用[D]. 青岛: 青岛科技大学, 2016.
ZHANG Y Y. Toxicity effect of omethoate to Danio rerio[D]. Qingdao: Qingdao University of Science & Technology, 2016.(in Chinese)
|
[6] |
LOTTI M, MORETTO A. Organophosphate-induced delayed polyneuropathy [J]. Toxicological Reviews, 2005, 24(1): 37−49. doi: 10.2165/00139709-200524010-00003
|
[7] |
HUO D, JIANG S L, QIN Z, et al. Omethoate induces pharyngeal cancer cell proliferation and G1/S cell cycle progression by activation of Akt/GSK-3β/cyclin D1 signaling pathway [J]. Toxicology, 2019, 427: 152298. doi: 10.1016/j.tox.2019.152298
|
[8] |
COSTA L G. Organophosphorus compounds at 80: Some old and new issues [J]. Toxicological Sciences, 2018, 162(1): 24−35. doi: 10.1093/toxsci/kfx266
|
[9] |
KATSIKANTAMI I, COLOSIO C, ALEGAKIS A, et al. Estimation of daily intake and risk assessment of organophosphorus pesticides based on biomonitoring data-The internal exposure approach [J]. Food and Chemical Toxicology, 2019, 123: 57−71. doi: 10.1016/j.fct.2018.10.047
|
[10] |
SINGH B K, WALKER A. Microbial degradation of organophosphorus compounds [J]. FEMS Microbiology Reviews, 2006, 30(3): 428−471. doi: 10.1111/j.1574-6976.2006.00018.x
|
[11] |
张娜娜, 姜博, 邢奕, 等. 有机磷农药污染土壤的微生物降解研究进展 [J]. 土壤, 2018, 50(4):645−655.
ZHANG N N, JIANG B, XING Y, et al. Microbial degradation of organophosphorus pesticide contaminated soils [J]. Soils, 2018, 50(4): 645−655.(in Chinese)
|
[12] |
MATSUMURA F, BOUSH G M. Malathion degradation by Trichoderma viride and a Pseudomonas species [J]. Science, 1966, 153(3741): 1278−1280. doi: 10.1126/science.153.3741.1278
|
[13] |
SHI Y H, REN L, JIA Y, et al. Genome sequence of organophosphorus pesticide-degrading bacterium Pseudomonas stutzeri strain YC-YH1 [J]. Genome Announcements, 2015, 3(2): 192. doi: 10.1128/genomea.00192-15
|
[14] |
ERMAKOVA I T, SHUSHKOVA T V, SVIRIDOV A V, et al. Organophosphonates utilization by soil strains of Ochrobactrum anthropi and Achromobacter sp [J]. Archives of Microbiology, 2017, 199(5): 665−675. doi: 10.1007/s00203-017-1343-8
|
[15] |
SUN L N, LIU H M, GAO X H, et al. Isolation of monocrotophos-degrading strain Sphingobiumsp. YW16 and cloning of its TnopdA [J]. Environmental Science and Pollution Research, 2018, 25(5): 4942−4950. doi: 10.1007/s11356-017-0718-3
|
[16] |
顾欣, 刘文辉, 杨环羽, 等. 有机磷农药广谱降解菌A1A18菌株(Brevundimonas sp.)的筛选、鉴定与降解特性分析 [J]. 西北农业学报, 2019, 28(11):1896−1905.
GU X, LIU W H, YANG H Y, et al. Screening, identification and degradation characteristics of a broad- spectrum organophosphorus pesticide-degrading bacteria strain A1A18 (Brevundimonas sp.) [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(11): 1896−1905.(in Chinese)
|
[17] |
ABO-AMER A. Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment [J]. Journal of Microbiology and Biotechnology, 2011, 21(1): 71−80. doi: 10.4014/jmb.1007.07024
|
[18] |
黄高凌, 蔡慧农, 曾琪, 等. 碱水解-分光光度法快速检测有机磷农药的研究 [J]. 集美大学学报(自然科学版), 2009, 14(4):366−371.
HUANG G L, CAI H N, ZENG Q, et al. Study on an alkalinehydrolysis-spectrophotometry for detecting organophosphate pesticide [J]. Journal of Jimei University (Natural Science Edition), 2009, 14(4): 366−371.(in Chinese)
|
[19] |
石成春. 有机磷农药曲霉生物降解特性及其动力学的研究[D]. 福州: 福州大学, 2005.
SHI C C. Study on the characteristics and kinetics of biodegradation of organophosphate pesticides by the aspergillus[D]. Fuzhou: Fuzhou University, 2005.(in Chinese)
|
[20] |
汪耀明, 陶玉贵, 叶连斌, 等. 毛细管电泳仪测定土壤中氧化乐果的含量 [J]. 安徽工程科技学院学报(自然科学版), 2007, 22(4):38−41.
WANG Y M, TAO Y G, YE L B, et al. Determination of omethoate in soil by capillary electrophoresis [J]. Journal of Anhui University of Technology and Science (Natural Science Edition), 2007, 22(4): 38−41.(in Chinese)
|
[21] |
杨慧. 有机磷农药降解菌的分离、鉴定及固定化研究[D]. 哈尔滨: 黑龙江大学, 2008.
YANG H. Isolation, identification and immobilization of organophosphorus pesticide degrading bacteria[D]. Harbin: Helongjiang University, 2008.(in Chinese)
|
[22] |
LU Y L, SONG S, WANG R S, et al. Impacts of soil and water pollution on food safety and health risks in China [J]. Environment International, 2015, 77: 5−15. doi: 10.1016/j.envint.2014.12.010
|
[23] |
CHOUDRI B S, CHARABI Y. Pesticides and herbicides [J]. Water Environment Research, 2019, 91(10): 1342−1349. doi: 10.1002/wer.1227
|
[24] |
VAN BRUGGEN A H C, HE M M, SHIN K, et al. Environmental and health effects of the herbicide glyphosate [J]. The Science of the Total Environment, 2018, 616/617: 255−268. doi: 10.1016/j.scitotenv.2017.10.309
|
[25] |
UWIZEYIMANA H, WANG M, CHEN W P, et al. The eco-toxic effects of pesticide and heavy metal mixtures towards earthworms in soil [J]. Environmental Toxicology and Pharmacology, 2017, 55: 20−29. doi: 10.1016/j.etap.2017.08.001
|
[26] |
RICHARDSON J R, FITSANAKIS V, WESTERINK R H S, et al. Neurotoxicity of pesticides [J]. Acta Neuropathologica, 2019, 138(3): 343−362. doi: 10.1007/s00401-019-02033-9
|
[27] |
ISLAM F, WANG J, FAROOQ M A, et al. Potential impact of the herbicide 2, 4-dichlorophenoxyacetic acid on human and ecosystems [J]. Environment International, 2018, 111: 332−351. doi: 10.1016/j.envint.2017.10.020
|
[28] |
JIN Y X, WU S S, ZENG Z Y, et al. Effects of environmental pollutants on gut microbiota [J]. Environmental Pollution, 2017, 222: 1−9. doi: 10.1016/j.envpol.2016.11.045
|
[29] |
CYCON M, MROZIK A, PIOTROWSKA-SEGET Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review [J]. Chemosphere, 2017, 172: 52−71. doi: 10.1016/j.chemosphere.2016.12.129
|
[30] |
HUANG Y C, XIAO L J, LI F Y, et al. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review [J]. Molecules, 2018, 23(9): 2313. doi: 10.3390/molecules23092313
|
[31] |
CYCOŃ M, PIOTROWSKA-SEGET Z. Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: A review [J]. Frontiers in Microbiology, 2016, 7: 1463.
|
[32] |
CHUN M, CHNGCHUN S, YANGHAO G, et al. Study on characteristics of biocometabolic removal of omethoate by the Aspergillus spp [J]. Water Research, 2004, 38(5): 1139−1146. doi: 10.1016/j.watres.2003.11.026
|
[33] |
LI C K, MA Y Z, MI Z H, et al. Screening for Lactobacillus plantarum strains that possess organophosphorus pesticide-degrading activity and metabolomic analysis of phorate degradation [J]. Frontiers in Microbiology, 2018, 9: 2048. doi: 10.3389/fmicb.2018.02048
|