• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 35 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
YUAN Y L, SUN J, XU R Y, et al. Effects of Arbuscular Mycorrhizal Fungi and Organic Fertilizer on Key Microbial Carbon-cycle Genes in Rhizosphere Soil at Sweet Corn Field [J]. Fujian Journal of Agricultural Sciences,2020,35(7):753−763 doi: 10.19303/j.issn.1008-0384.2020.07.009
Citation: YUAN Y L, SUN J, XU R Y, et al. Effects of Arbuscular Mycorrhizal Fungi and Organic Fertilizer on Key Microbial Carbon-cycle Genes in Rhizosphere Soil at Sweet Corn Field [J]. Fujian Journal of Agricultural Sciences,2020,35(7):753−763 doi: 10.19303/j.issn.1008-0384.2020.07.009

Effects of Arbuscular Mycorrhizal Fungi and Organic Fertilizer on Key Microbial Carbon-cycle Genes in Rhizosphere Soil at Sweet Corn Field

doi: 10.19303/j.issn.1008-0384.2020.07.009
  • Received Date: 2020-05-08
  • Rev Recd Date: 2020-06-09
  • Publish Date: 2020-07-31
  •   Objective   Effect of arbuscular mycorrhizal fungi (AMF) and organic fertilizer applied in sweet corn field on the microbial genes relating to the carbon (C) cycling in the rhizosphere was studied to decipher the biological mechanism and the soil C-transformation.  Method   Seven treatments with triplicates each were applied on the sweet corn fields including (1) no N fertilizer (CK), (2) optimized fertilization (OF), (3) organic N fertilizer to replace 10% of chemical N fertilizer (ORF10), (4) organic N fertilizer to replace 20% of chemical N fertilizer (ORF20), (5) ORF10 with added Glomus versiforme (ORF10+AMF), (6) ORF20 with added G. versiforme (ORF20+AMF), and (7) CK with added G. versiforme (CK+AMF). Genes related to C-cycling in the treated rhizosphere soils were analyzed using GeoChip 5.0 technology.   Result  Addition of AMF in fertilizing the sweet corn plants significantly increased the yield. By adding AMF to CK, ORF10, and ORF20, the treatments increased the number of fresh buds on the plants by 32.6%, 8.6%, and 8.9%, respectively. The results of gene sequencing on the soil samples showed that the AMF/organic fertilizer combinations significantly altered the structure of the microbial C-cycle genes. The signal strength of key functional genes associated with C-cycling, such as C-decomposition, C-fixation, and methane metabolism, were generally stronger under CK+AMF and ORF20+AMF than the other treatments. According to the redundancy analysis, the respiration, total nitrogen, pH, total potassium, organic matter, available phosphorus, and total phosphorus in rhizosphere soil were the major environmental factors affecting the functions of the C-cycle-related genes.  Conclusion  The application of organic fertilizer and G. versiforme in sweet corn field significantly increased the fresh bud count on the plants. It changed the structure of the microbial C-cycle genes in rhizosphere soil positively affecting the decomposition and fixation of C as well as the methane metabolism of the ecosystem.
  • loading
  • [1]
    BARDGETT R D, FREEMAN C, OSTLE N J. Microbial contributions to climate change through carbon cycle feedbacks [J]. The ISME Journal, 2008, 2(8): 805−814. doi: 10.1038/ismej.2008.58
    [2]
    ZHOU J Z, XUE K, XIE J P, et al. Microbial mediation of carbon-cycle feedbacks to climate warming [J]. Nature Climate Change, 2012, 2(2): 106−110. doi: 10.1038/nclimate1331
    [3]
    TRIVEDI P, ANDERSON I C, SINGH B K. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction [J]. Trends in Microbiology, 2013, 21(12): 641−651. doi: 10.1016/j.tim.2013.09.005
    [4]
    郑慧芬, 曾玉荣, 叶菁, 等. 农田土壤碳转化微生物及其功能的研究进展 [J]. 亚热带农业研究, 2018, 14(3):209−216.

    ZHENG H F, ZENG Y R, YE J, et al. Research advance on soil carbon conversion microorganisms and their functions in farmland ecosystems [J]. Subtropical Agriculture Research, 2018, 14(3): 209−216.(in Chinese)
    [5]
    王立, 贾文奇, 马放, 等. 菌根技术在环境修复领域中的应用及展望 [J]. 生态环境学报, 2010, 19(2):487−493. doi: 10.3969/j.issn.1674-5906.2010.02.043

    WANG L, JIA W Q, MA F, et al. Perspective of mycorrhizal technology application for environmental remediation [J]. Ecology and Environmental Sciences, 2010, 19(2): 487−493.(in Chinese) doi: 10.3969/j.issn.1674-5906.2010.02.043
    [6]
    陆大雷, 刘小兵, 赵久然, 等. 甜玉米氮素吸收利用的基因型差异 [J]. 植物营养与肥料学报, 2008, 14(2):258−263. doi: 10.3321/j.issn:1008-505X.2008.02.009

    LU D L, LIU X B, ZHAO J R, et al. Genotypic differences in nitrogen uptake and utilization of sweet maize [J]. Plant Nutrition and Fertilizer Science, 2008, 14(2): 258−263.(in Chinese) doi: 10.3321/j.issn:1008-505X.2008.02.009
    [7]
    张白鸽, 李强, 陈琼贤, 等. 广东甜玉米施肥指标体系研究 [J]. 广东农业科学, 2013, 40(20):67−70. doi: 10.3969/j.issn.1004-874X.2013.20.022

    ZHANG B G, LI Q, CHEN Q X, et al. Research on index system for sweet maize fertilization in Guangdong [J]. Guangdong Agricultural Sciences, 2013, 40(20): 67−70.(in Chinese) doi: 10.3969/j.issn.1004-874X.2013.20.022
    [8]
    田善义, 王明伟, 成艳红, 等. 化肥和有机肥长期施用对红壤酶活性的影响 [J]. 生态学报, 2017, 37(15):4963−4972.

    TIAN S Y, WANG M W, CHENG Y H, et al. Long-term effects of chemical and organic amendments on red soil enzyme activities [J]. Acta Ecologica Sinica, 2017, 37(15): 4963−4972.(in Chinese)
    [9]
    郭良栋, 田春杰. 菌根真菌的碳氮循环功能研究进展 [J]. 微生物学通报, 2013, 40(1):158−171.

    GUO L D, TIAN C J. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen [J]. Microbiology China, 2013, 40(1): 158−171.(in Chinese)
    [10]
    金海如, 蒋湘艳, 夏婷婷. 不同有机物料及其菌根化对甜玉米产量与品质的协同影响 [J]. 中国土壤与肥料, 2019(6):196−203.

    JIN H R, JIANG X Y, XIA T T. Synergistic effect of different organic matters and mycorrhizal fungi on biomass and quality of sweet maize [J]. Soil and Fertilizer Sciences in China, 2019(6): 196−203.(in Chinese)
    [11]
    徐如玉, 左明雪, 袁银龙, 等. 增施摩西管柄囊霉对甜玉米氮肥增效及土壤丛枝菌根真菌多样性的影响 [J]. 福建农业学报, 2020, 35(4):379−391.

    XU R Y, ZUO M X, YUAN Y L, et al. Effects of Funneliformis mosseae application on nitrogen utilization by sweet corn and AM fungi diversity in soil [J]. Fujian Journal of Agricultural Sciences, 2020, 35(4): 379−391.(in Chinese)
    [12]
    徐丽娇, 姜雪莲, 郝志鹏, 等. 丛枝菌根通过调节碳磷代谢相关基因的表达增强植物对低磷胁迫的适应性 [J]. 植物生态学报, 2017, 41(8):815−825. doi: 10.17521/cjpe.2017.0018

    XU L J, JIANG X L, HAO Z P, et al. Arbuscular mycorrhiza improves plant adaptation to phosphorus deficiency through regulating the expression of genes relevant to carbon and phosphorus metabolism [J]. Chinese Journal of Plant Ecology, 2017, 41(8): 815−825.(in Chinese) doi: 10.17521/cjpe.2017.0018
    [13]
    张弘. 相同碳氮比有机物料和生物炭对烤烟品质及土壤碳氮代谢的影响 [D]. 郑州: 河南农业大学, 2017.

    ZHANG H. Effect of the same C/N ratio organic material and boichar on flue-cured tobacco quality and soil carbon nitrogen metabolism [D]. Zhengzhou: Henan Agricultural University, 2017.(in Chinese)
    [14]
    梁晋刚, 辛龙涛, 栾颖, 等. 转cry1Ie基因抗虫玉米对根际微生物群落碳代谢的影响 [J]. 中国农业科技导报, 2019, 21(2):104−110.

    LIANG J G, XIN L T, LUAN Y, et al. Effect of Cry1Ie bt maize on carbon source metabolism of rhizosphere microorganisms [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 104−110.(in Chinese)
    [15]
    路花, 张美俊, 冯美臣, 等. 氮肥减半配施有机肥对燕麦田土壤微生物群落功能多样性的影响 [J]. 生态学杂志, 2019, 38(12):3660−3666.

    LU H, ZHANG M J, FENG M C, et al. Effects of half-reduced nitrogen fertilization combined with organic fertilizer on functional diversity of soil microbial communities in oat field [J]. Chinese Journal of Ecology, 2019, 38(12): 3660−3666.(in Chinese)
    [16]
    孙丹萍. 丛枝菌根真菌扩繁技术研究 [J]. 河南林业科技, 2004, 24(2):12−13, 15. doi: 10.3969/j.issn.1003-2630.2004.02.006

    SUN D P. Study on the propagation technology of arbuscular mycorrhizal fungi [J]. Journal of Henan Forestry Science and Technology, 2004, 24(2): 12−13, 15.(in Chinese) doi: 10.3969/j.issn.1003-2630.2004.02.006
    [17]
    毕银丽, 孙欢, 郭楠, 等. 不同基质和菌种组合对丛枝菌根真菌扩繁效果的影响 [J]. 应用与环境生物学报, 2017, 23(4):616−621.

    BI Y L, SUN H, GUO N, et al. Propagate-effects of different substrates and strain combinations on arbuscular mycorrhizal fungi [J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(4): 616−621.(in Chinese)
    [18]
    ZHAO Y P, LIN S, CHU L X, et al. Insight into structure dynamics of soil microbiota mediated by the richness of replanted Pseudostellaria heterophylla [J]. Scientific Reports, 2016, 6: 26175. doi: 10.1038/srep26175
    [19]
    鲍士旦. 土壤农化分析 [M]. 北京: 中国农业出版社, 2000.
    [20]
    鲁如坤. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社, 2000.
    [21]
    STRALIS-PAVESE N, ABELL G C J, SESSITSCH A, et al. Analysis of methanotroph community composition using a pmoA -based microbial diagnostic microarray [J]. Nature Protocols, 2011, 6(5): 609. doi: 10.1038/nprot.2010.191
    [22]
    吕鹏, 张吉旺, 刘伟, 等. 施氮量对超高产夏玉米产量及氮素吸收利用的影响 [J]. 植物营养与肥料学报, 2011, 17(5):852−860.

    LÜ P, ZHANG J W, LIU W, et al. Effects of nitrogen application on yield and nitrogen use efficiency of summer maize under super-high yield conditions [J]. Plant Nutrition and Fertilizer Science, 2011, 17(5): 852−860.(in Chinese)
    [23]
    段媛君, 王百田. 不同肥料与AM真菌配施对沙打旺品质的影响 [J]. 西北农林科技大学学报(自然科学版), 2019, 47(5):118−124.

    DUAN Y J, WANG B T. Effect of different fertilizers and AM fungi on quality of Astragalus adsurgens Pall [J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(5): 118−124.(in Chinese)
    [24]
    周世品. 有机无机肥配施和丛枝菌根化育苗对西瓜产量品质的影响 [D]. 南京: 南京农业大学, 2017.

    ZHOU S P. Effects of combined organic and inorganic fertilizer and arbuscular mycorrhizal colonization on watermelon yield and quality [D]. Nanjing: Nanjing Agricultural University, 2017.(in Chinese)
    [25]
    张前兵. 干旱区不同管理措施下绿洲棉田土壤呼吸及碳平衡研究 [D]. 石河子: 石河子大学, 2013.

    ZHANG Q B. Studies on soil respiration and carbon balance under different management practices in cotton field of oasis in arid region[D]. Shihezi: Shihezi University, 2013.(in Chinese)
    [26]
    贺美,王迎春,王立刚,等.不同耕作措施对黑土碳排放和活性碳库的影响[J].土壤通报,2016, 47(5):1195-1202.

    HE M, WANG Y C, WANG L G, et al. Effect of different tillage managements oncarbon dioxide emission and content of activated carbon in black soil [J]. Chinese Journal of Soil Science, 2016, 47(5): 1195-1202.(in Chinese)
    [27]
    HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754−13759. doi: 10.1073/pnas.1005874107
    [28]
    CHENG L, BOOKER F L, TU C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2 [J]. Science, 2012, 337(6098): 1084−1087. doi: 10.1126/science.1224304
    [29]
    RUI J P, LI J B, WANG S P, et al. Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet plateau [J]. Applied and Environmental Microbiology, 2015, 81(17): 6070−6077. doi: 10.1128/AEM.00557-15
    [30]
    TABITA F R. Microbial ribulose1,5-bisphosphate carboxylase/oxygenase: A different perspective [J]. Photosynthesis Research, 1999, 60(1): 1−28. doi: 10.1023/A:1006211417981
    [31]
    SIEGENTHALER U, SARMIENTO J L. Atmospheric carbon dioxide and the ocean [J]. Nature, 1993, 365(6442): 119−125. doi: 10.1038/365119a0
    [32]
    刘洋荧, 王尚, 厉舒祯, 等. 基于功能基因的微生物碳循环分子生态学研究进展 [J]. 微生物学通报, 2017, 44(7):1676−1689.

    LIU Y Y, WANG S, LI S Z, et al. Advances in molecular ecology on microbial functional genes of carbon cycle [J]. Microbiology China, 2017, 44(7): 1676−1689.(in Chinese)
    [33]
    GIFFORD R M. The global carbon cycle: A viewpoint on the missing sink [J]. Functional Plant Biology, 1994, 21(1): 1. doi: 10.1071/PP9940001
    [34]
    VAN GROENIGEN K J, OSENBERG C W, HUNGATE B A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2 [J]. Nature, 2011, 475(7355): 214−216. doi: 10.1038/nature10176
    [35]
    XUE K, YUAN M M, SHI Z J, et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming [J]. Nature Climate Change, 2016, 6(6): 595−600. doi: 10.1038/nclimate2940
    [36]
    PENDALL E, BRIDGHAM S D, HANSON P J, et al. Below-ground process responses to elevated CO2 and temperature: A discussion of observations, measurement methods, and models [J]. New Phytologist, 2004, 162(2): 311−322. doi: 10.1111/j.1469-8137.2004.01053.x
    [37]
    FORSTER P, RAMASWAMY V, ARTAXO P, et al. Changes in atmospheric constituents and in radiative forcing [M] the 4th Assessment Report of the IPCC WG1: The Physical Science Basis. DLR, 2007.
    [38]
    HE Z L, XU M Y, DENG Y, et al. Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2 [J]. Ecology Letters, 2010, 13(5): 564−575. doi: 10.1111/j.1461-0248.2010.01453.x
    [39]
    YERGEAU E, KANG S, HE Z L, et al. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect [J]. The ISME Journal, 2007, 1(2): 163−179. doi: 10.1038/ismej.2007.24
    [40]
    REEVE J R, SCHADT C W, CARPENTER-BOGGS L, et al. Effects of soil type and farm management on soil ecological functional genes and microbial activities [J]. The ISME Journal, 2010, 4(9): 1099−1107. doi: 10.1038/ismej.2010.42
    [41]
    LIU Z F, LIU G H, FU B J, et al. Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China [J]. Ecological Research, 2008, 23(3): 511−518. doi: 10.1007/s11284-007-0405-9
    [42]
    WARDLE D A. Ecological linkages between aboveground and belowground biota [J]. Science, 2004, 304(5677): 1629−1633. doi: 10.1126/science.1094875
    [43]
    ZHANG Y G, CONG J, LU H, et al. An integrated study to analyze soil microbial community structure and metabolic potential in two forest types [J]. PLoS One, 2014, 9(4): e93773. doi: 10.1371/journal.pone.0093773
    [44]
    ROUSK J, BROOKES P C, BAATH E. The microbial PLFA composition as affected by pH in an arable soil [J]. Soil Biology & Biochemistry, 2010, 42(3): 516−520.
    [45]
    BASTIDA F, MORENO J L, HERNÁNDEZ T, et al. Microbiological activity in a soil 15 years after its devegetation [J]. Soil Biology and Biochemistry, 2006, 38(8): 2503−2507. doi: 10.1016/j.soilbio.2006.02.022
    [46]
    LI Y Q, XU M, ZOU X M, et al. Soil CO2 efflux and fungal and bacterial biomass in a plantation and a secondary forest in wet tropics in Puerto Rico [J]. Plant and Soil, 2005, 268(1): 151−160. doi: 10.1007/s11104-004-0234-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (1174) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return