• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 35 Issue 5
May  2020
Turn off MathJax
Article Contents
CHEN Y S, LI X, DENG B P. Growth and Development of Leptocybe invasa as Affected by Environmental Temperature [J]. Fujian Journal of Agricultural Sciences,2020,35(5):545−551 doi: 10.19303/j.issn.1008-0384.2020.05.012
Citation: CHEN Y S, LI X, DENG B P. Growth and Development of Leptocybe invasa as Affected by Environmental Temperature [J]. Fujian Journal of Agricultural Sciences,2020,35(5):545−551 doi: 10.19303/j.issn.1008-0384.2020.05.012

Growth and Development of Leptocybe invasa as Affected by Environmental Temperature

doi: 10.19303/j.issn.1008-0384.2020.05.012
  • Received Date: 2020-02-27
  • Rev Recd Date: 2020-04-29
  • Publish Date: 2020-05-01
  •   Objective  Correlations between the growth, reproduction, and distribution of Leptocybe invasa, an insect that causes galls in plants, and the surrounding temperature were studied to facilitate the monitoring and controlling the spread of the pest wasp.  Method  Duration and speed of each development state of the wasp were measured by inoculating and feeding the larvae indoor at 19, 22, 25, 28 and 31℃. Graphic, linear, and logistic regression analyses were applied to establish the correlations. Threshold and effective temperatures for the emergences of various stages of the insect were obtained using a linear regression model.  Result  Temperature was found to significantly affect not only at the stage from egg to pupa, but also the entire development and adult life of the insect. The increasing temperature hastened the insect development process. The graphic linear regression model seemed to more accurately describe their correlation than the other models. In Gannan, Jiangxi, the threshold emergence temperature of the eggs was found to be 10.78℃; that of the larva, 10.29℃; that of the pupa, 14.64℃; the adult survival threshold temperature, 14.73℃; and, the temperature for the development of an entire generation, 12.68℃. The accumulated effective temperature for the eggs was found to be 86.96℃; that for the larva, 588.24℃; that for the pupa, 92.59℃; that for the adult survival, 104.17℃; and, that for the development of an entire generation, 712.34 d·℃. And, the optimum temperature for the egg development, 25.68℃; for the larvae, 25.65℃; for the pupa, 24.58℃; for the adult survival, 26.42℃; and, for the development of an entire generation, 23.84℃ with a range between 12.21℃ and 35.48℃. The model estimated 4.27 generations of L. invasa had taken place between 2017 and 2019 which was in agreement with what was observed in the field.  Conclusion  Temperature was critical for the development of L. invasa. Understanding the correlation would aid in predicting the development, infestation time and area, and emerging generations of L. invasa for effective control of the pest.
  • loading
  • [1]
    Honěk A. Geographical variation in thermal requirements for insect development [J]. European Journal of Entomology, 1996, 93: 303−312.
    [2]
    JAROŠÍK V, HONĚK A, DIXON A F G. Developmental rate isomorphy in insects and mites [J]. The American Naturalist, 2002, 160(4): 497−510. doi: 10.1086/342077
    [3]
    BARTEKOVÁ A, PRASLIČKA J. The effect of ambient temperature on the development of cotton bollworm (Helicoverpa armigera Hübner, 1808) [J]. Plant Protection Science, 2010, 42(No. 4): 135−138.
    [4]
    陈元生, 罗致迪, 于海萍. 气象因子对赣南桉树枝瘿姬小蜂成虫发生量的影响 [J]. 中国植保导刊, 2016, 36(8):41−45. doi: 10.3969/j.issn.1672-6820.2016.08.008

    CHEN Y S, LUO Z D, YU H P. Effects of meteorological factors on adult population numbers of Leptocybe invasa in Southern Jiangxi Province [J]. China Plant Protection, 2016, 36(8): 41−45.(in Chinese) doi: 10.3969/j.issn.1672-6820.2016.08.008
    [5]
    徐家雄, 任辉, 赵丹阳, 等. 桉树枝瘿姬小蜂种群发生规律与空间分布格局研究 [J]. 广东林业科技, 2008, 24(6):50−57.

    XU J X, REN H, ZHAO D Y, et al. Study on the population regularity and spatial distribution pattern of Leptocybe invasa at Eucalyptus [J]. Guangdong Forestry Science and Technology, 2008, 24(6): 50−57.(in Chinese)
    [6]
    陈元生, 涂小云, 罗益群. 赣南桉树枝瘿姬小蜂种群动态研究 [J]. 江苏农业科学, 2015, 43(11):178−180.

    CHEN Y S, TU X Y, LUO Y Q. Study on the population dynamics of Leptocybe invasa on Eucalyptus spp. in Southern Jiangxi [J]. Jiangsu Agricultural Sciences, 2015, 43(11): 178−180.(in Chinese)
    [7]
    陈元生, 廖忠明, 涂小云. 赣南桉树品种(系)对桉树枝瘿姬小蜂的抗性研究 [J]. 北方园艺, 2015(11):106−109.

    CHEN Y S, LIAO Z M, TU X Y. Study on resistance of different Eucalyptus varieties to leptocybeinvasain southern Jiangxi [J]. Northern Horticulture, 2015(11): 106−109.(in Chinese)
    [8]
    陈元生, 蔡润玉, 罗致迪, 等. 赣南桉树枝瘿姬小蜂种群物理监测技术研究 [J]. 现代农业科技, 2020(4):93−95, 97.

    CHEN Y S, CAI R Y, LUO Z D, et al. Study on population physical monitoring technology of Leptocybe invasa on Eucalyptus spp. in southern Jiangxi Province [J]. Modern Agricultural Science and Technology, 2020(4): 93−95, 97.(in Chinese)
    [9]
    陈元生, 金志芳, 涂小云. 桉树枝瘿姬小蜂化学防治药剂的筛选 [J]. 河南农业科学, 2015, 44(4):106−109.

    CHEN Y S, JIN Z F, TU X Y. Screening of chemical pesticides for control of Leptocybe invasa [J]. Journal of Henan Agricultural Sciences, 2015, 44(4): 106−109.(in Chinese)
    [10]
    吴耀军, 常明山, 李德伟, 等. 桉树枝瘿姬小蜂发育起点温度与有效积温的研究 [J]. 广东林业科技, 2013, 29(6):27−30.

    WU Y J, CHANG M S, LI D W, et al. Threshold and effective accumulative temperature for the development of Leptocybe invasa [J]. Guangdong Forestry Science and Technology, 2013, 29(6): 27−30.(in Chinese)
    [11]
    邱焕秀, 徐家雄, 林明生. 桉树枝瘿姬小蜂生物学特性和有效积温研究 [J]. 广东林业科技, 2011, 27(4):1−5.

    QIU H X, XU J X, LIN M S. Study on the biology and effective accumulated temperature by Leptocybe invasa at Eucalyptus [J]. Guangdong Forestry Science and Technology, 2011, 27(4): 1−5.(in Chinese)
    [12]
    朱方丽. 桉树枝瘿姬小蜂生物学及生态学研究[D]. 广州: 华南农业大学, 2012.

    ZHU F L. Study on biology and ecology of Leptocybe invasa at Eucalyptus[D]. Guangzhou: South China Agricultural University, 2012. (in Chinese)
    [13]
    陈汉章, 林秀琴, 陈顺立, 等. 桉树枝瘿姬小蜂发育起点温度和有效积温的测定 [J]. 长江大学学报(自科版), 2013, 10(29):1−6, 10, 8.

    CHEN H Z, LIN X Q, CHEN S L, et al. Measurement and application of developmental threshold temperature and effective cumulative temperature of Leptocybe invasa fisher et La salle [J]. Journal of Yangtze University(Natural Science Edition), 2013, 10(29): 1−6, 10, 8.(in Chinese)
    [14]
    牟吉元. 昆虫生态与农业害虫预测预报[M]. 北京: 中国农业科技出版社, 1997: 134-136.
    [15]
    袁盛勇, 孔琼, 肖春, 等. 桔小实蝇各虫态发育历期及有效积温研究 [J]. 西南农业大学学报(自然科学版), 2005, 27(3):316−318.

    YUAN S Y, KONG Q, XIAO C, et al. Developmental threshold temperature and effective cumutive temperature of Bactrocera dorsalis hendel [J]. Journal of Southwest Agricultural University, 2005, 27(3): 316−318.(in Chinese)
    [16]
    陈元生, 罗致迪, 钟平华. 棉铃虫发育起点温度和有效积温的地理变异 [J]. 环境昆虫学报, 2017, 39(3):573−579.

    CHEN Y S, LUO Z D, ZHONG P H. Geographic variation indevelopment threshold temperature and sum of effective temperatures of the cotton bollworm, Helicoverpa armigera Hübner(Lepidoptera: Noctuidae) [J]. Journal of Environmental Entomology, 2017, 39(3): 573−579.(in Chinese)
    [17]
    宋墩福, 陈元生, 涂小云. 花绒寄甲赣南种群发育起点温度与有效积温研究 [J]. 中国植保导刊, 2015, 35(6):58−60, 44. doi: 10.3969/j.issn.1672-6820.2015.06.015

    SONG D F, CHEN Y S, TU X Y. Study on development threshold and sum of effective temperatures of Dastarcus helophoroides Gannan population [J]. China Plant Protection, 2015, 35(6): 58−60, 44.(in Chinese) doi: 10.3969/j.issn.1672-6820.2015.06.015
    [18]
    潘雪红, 商显坤, 魏吉利, 等. 温度对蔗螟天敌等腹黑卵蜂生长发育的影响 [J]. 西南农业学报, 2019, 32(3):539−543.

    PAN X H, SHANG X K, WEI J L, et al. Effect of temperature on development of natural enemy Telenomus dignus [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(3): 539−543.(in Chinese)
    [19]
    岳健, 何嘉, 张蓉, 等. 多异瓢虫的发育与温度的关系 [J]. 昆虫知识, 2009, 46(4):605−609.

    YUE J, HE J, ZHANG R, et al. Relationship between the temperature and the development of Hippodamia variegata [J]. Chinese Bulletin of Entomology, 2009, 46(4): 605−609.(in Chinese)
    [20]
    商显坤, 黄诚华, 魏吉利, 等. 温度对突背蔗犀金龟蛹发育速率的影响 [J]. 植物保护, 2017, 43(6):118−122. doi: 10.3969/j.issn.0529-1542.2017.06.019

    SHANG X K, HUANG C H, WEI J L, et al. Effects of temperature on the developmental rate of Alissonotum impressicolle pupae [J]. Plant Protection, 2017, 43(6): 118−122.(in Chinese) doi: 10.3969/j.issn.0529-1542.2017.06.019
    [21]
    汤行昊. 桉树枝瘿姬小蜂生物学、生态学特性及防治试验[D]. 福州: 福建农林大学, 2013.

    Tang X H. Study on Biology, Ecology and control of Leptocybe invasa Fisher&La salle[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. (in Chinese)
    [22]
    时培建, 池本孝哉, 戈峰. 温度与昆虫生长发育关系模型的发展与应用 [J]. 应用昆虫学报, 2011, 48(5):1149−1160. doi: 10.7679/j.issn.2095-1353.2011.189

    SHI P J, IKEMOTO T K, GE F. Development and application of models for describing the effects of temperature on insects' growth and development [J]. Chinese Journal of Applied Entomology, 2011, 48(5): 1149−1160.(in Chinese) doi: 10.7679/j.issn.2095-1353.2011.189
    [23]
    何莉梅, 葛世帅, 陈玉超, 等. 草地贪夜蛾的发育起点温度、有效积温和发育历期预测模型 [J]. 植物保护, 2019, 45(5):18−26.

    HE L M, GE S S, CHEN Y C, et al. The developmental threshold temperature, effective accumulated temperature and prediction model of developmental duration of fall armyworm, Spodoptera frugiperda [J]. Plant Protection, 2019, 45(5): 18−26.(in Chinese)
    [24]
    LAMB R J. Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: implications for estimating rate parameters for insects [J]. Environmental Entomology, 1992, 21(1): 10−19. doi: 10.1093/ee/21.1.10
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(5)

    Article Metrics

    Article views (1192) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return