• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 34 Issue 11
Nov.  2019
Turn off MathJax
Article Contents
YU S S, LUO X, LIAN L, et al. Identification of CIPK Family in Rice and qRT-PCR Analysis on OsCIPK5 Induced by Magnaporthe oryzae [J]. Fujian Journal of Agricultural Sciences,2019,34(11):1237−1245. doi: 10.19303/j.issn.1008-0384.2019.11.001
Citation: YU S S, LUO X, LIAN L, et al. Identification of CIPK Family in Rice and qRT-PCR Analysis on OsCIPK5 Induced by Magnaporthe oryzae [J]. Fujian Journal of Agricultural Sciences,2019,34(11):1237−1245. doi: 10.19303/j.issn.1008-0384.2019.11.001

Identification of CIPK Family in Rice and qRT-PCR Analysis on OsCIPK5 Induced by Magnaporthe oryzae

doi: 10.19303/j.issn.1008-0384.2019.11.001
  • Received Date: 2019-10-05
  • Rev Recd Date: 2019-11-02
  • Publish Date: 2019-11-01
  •   Objective  The family of calcineurin B-like protein-interacting protein kinase genes (CIPKs) in rice was studied using the latest sequencing data to further understand the signal transduction involving a variety of kinases in plants in respond to environmental changes.  Methods  The structures of CIPKs in Arabidopsis thaliana and rice were analyzed. Combining the bioinformatics and qRT-PCR technology, expressions of the CIPK familie and that of the genes induced by M. grisea in Japonica rice cv. 'Yunyin' were compared.  Results  A total of 31 OsCIPK genes were identified in the rice genome databank. The phylogenetic tree analysis showed that these 31 OsCIPKs could be divided into 5 subfamilies, which had different structural characteristics of exon-intron and UTR. The expression of OsCIPK5, which was selected from a trend cluster of the gene expressiong profile of 'Yunyin' induced by M. grisea, could be induced by M. grisea.  Conclusions  It appeared that the intron deletion and fragment duplication played an important role in the expansion of OsCIPK family in rice, and that OsCIPK5 expression was induced in 'Yunyin' by M. grisea.
  • loading
  • [1]
    BAUM G, LONG J C, JENKINS G I, et al. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+ [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(23): 13554−13559. doi: 10.1073/pnas.96.23.13554
    [2]
    EVANS N H, MCAINSH M R, HETHERINGTON A M. Calcium oscillations in higher plants [J]. Current Opinion in Plant Biology, 2001, 4(5): 415−420. doi: 10.1016/S1369-5266(00)00194-1
    [3]
    KNIGHT H, KNIGHT M R. Abiotic stress signalling pathways: specificity and cross-talk [J]. Trends in Plant Science, 2001, 6(6): 262−267. doi: 10.1016/S1360-1385(01)01946-X
    [4]
    MACROBBIE E A C. ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+(Rb+) release [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(22): 12361−12368. doi: 10.1073/pnas.220417197
    [5]
    SANDERS D, BROWNLEE C, HARPER J F. Communicating with calcium [J]. The Plant Cell, 1999, 11(4): 691. doi: 10.1105/tpc.11.4.691
    [6]
    CHENG S H, WILLMANN M R, CHEN H C, et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family [J]. Plant Physiology, 2002, 129(2): 469−485. doi: 10.1104/pp.005645
    [7]
    HARMON A C, GRIBSKOV M, GUBRIUM E, et al. The CDPK superfamily of protein kinases [J]. New Phytologist, 2001, 151(1): 175−183. doi: 10.1046/j.1469-8137.2001.00171.x
    [8]
    LUAN S, RODRIGUEZCONCEPCION M, YALOVSKY S, et al. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants [J]. The Plant Cell, 2002, 14: S389−400. doi: 10.1105/tpc.001115
    [9]
    SNEDDEN W A, FROMM H. Calmodulin as a versatile calcium signal transducer in plants [J]. New Phytologist, 2001, 151(1): 35−66. doi: 10.1046/j.1469-8137.2001.00154.x
    [10]
    ZIELINSKI R E. Calmodulin and calmodulin-binding proteins in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49(1): 697−725. doi: 10.1146/annurev.arplant.49.1.697
    [11]
    LIU J, ISHITANI M, HALFTER U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3730−3734. doi: 10.1073/pnas.97.7.3730
    [12]
    ISHITANI M, LIU J P, HALFTER U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding [J]. The Plant Cell, 2000, 12(9): 1667−1677. doi: 10.1105/tpc.12.9.1667
    [13]
    SÁNCHEZ-BARRENA M J, MARTÍNEZ-RIPOLL M, ZHU J K, et al. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response [J]. Journal of Molecular Biology, 2005, 345(5): 1253−1264. doi: 10.1016/j.jmb.2004.11.025
    [14]
    GONG D M, GUO Y, SCHUMAKER K S, et al. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis [J]. Plant Physiology, 2004, 134(3): 919−926. doi: 10.1104/pp.103.037440
    [15]
    SHI H Z, ISHITANI M, KIM C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6896−6901. doi: 10.1073/pnas.120170197
    [16]
    QIU Q S, GUO Y, DIETRICH M A, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 8436−8441. doi: 10.1073/pnas.122224699
    [17]
    QIU Q S, GUO Y, QUINTERO F J, et al. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway [J]. Journal of Biological Chemistry, 2004, 279(1): 207−215. doi: 10.1074/jbc.M307982200
    [18]
    XIONG L M, SCHUMAKER K S, ZHU J K. Cell signaling during cold, drought, and salt stress [J]. The Plant Cell, 2002, 14(S1): S165−183.
    [19]
    ZHU J K. Salt and drought stress signal transduction in plants [J]. Annual Review of Plant Biology, 2002, 53(1): 247−273. doi: 10.1146/annurev.arplant.53.091401.143329
    [20]
    KOLUKISAOGLUÜ, WEINL S, BLAZEVIC D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiology, 2004, 134(1): 43−58. doi: 10.1104/pp.103.033068
    [21]
    XIANG Y, HUANG Y M, XIONG L Z. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement [J]. Plant Physiology, 2007, 144(3): 1416−1428. doi: 10.1104/pp.107.101295
    [22]
    CHEN X F, GU Z M, LIU F, et al. Molecular analysis of rice CIPKs involved in both biotic and abiotic stress responses [J]. Rice Science, 2011, 18(1): 1−9. doi: 10.1016/S1672-6308(11)60001-2
    [23]
    HOLUB E B. The arms race is ancient history in Arabidopsis, the wildflower [J]. Nature Reviews Genetics, 2001, 2(7): 516−527. doi: 10.1038/35080508
    [24]
    YU Y H, XIA X L, YIN W L, et al. Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus [J]. Plant Growth Regulation, 2007, 52(2): 101−110. doi: 10.1007/s10725-007-9165-3
    [25]
    KANWAR P, SANYAL S K, TOKAS I, et al. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice [J]. Cell Calcium, 2014, 56(2): 81−95. doi: 10.1016/j.ceca.2014.05.003
    [26]
    ROY S W, PENNY D. Patterns of intron loss and gain in plants: intron loss–dominated evolution and genome-wide comparison of O. sativa and A. thaliana [J]. Molecular Biology and Evolution, 2007, 24(1): 171−181.
    [27]
    NURUZZAMAN M, MANIMEKALAI R, SHARONI A M, et al. Genome-wide analysis of NAC transcription factor family in rice [J]. Gene, 2010, 465(1/2): 30−44.
    [28]
    KLEIST T J, SPENCLEY A L, LUAN S. Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages [J]. Frontiers in Plant Science, 2014(5): 187.
    [29]
    ZHANG H F, YANG B, LIU W Z, et al. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.) [J]. BMC Plant Biology, 2014, 14(1): 8. doi: 10.1186/1471-2229-14-8
    [30]
    KUDLA J, BATISTIČ O, HASHIMOTO K. Calcium signals: the lead currency of plant information processing [J]. The Plant Cell, 2010, 22(3): 541−563. doi: 10.1105/tpc.109.072686
    [31]
    HU H C, WANG Y Y, TSAY Y F. AtCIPK8, a CBL‐interacting protein kinase, regulates the low-affinity phase of the primary nitrate response [J]. Plant Journal, 2009, 57(2): 264−278. doi: 10.1111/j.1365-313X.2008.03685.x
    [32]
    CHUNG E, PARK J M, OH S K, et al. Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses [J]. Planta, 2004, 220(2): 286−295. doi: 10.1007/s00425-004-1372-9
    [33]
    LUDWIG A A, SAITOH H, FELIX G, et al. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10736−10741. doi: 10.1073/pnas.0502954102
    [34]
    FROHNMEYER H, LOYALL L, BLATT M R, et al. Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+ and stimulates gene expression in transgenic parsley cell cultures [J]. Plant Journal, 1999, 20(1): 109−117. doi: 10.1046/j.1365-313X.1999.00584.x
    [35]
    TREWAVAS A J, MALHÓ R. Ca2+ signalling in plant cells: the big network! [J]. Current Opinion in Plant Biology, 1998, 1(5): 428−443. doi: 10.1016/S1369-5266(98)80268-9
    [36]
    TRAN P O T, HINMAN L E, UNGER G M, et al. A wound-induced[Ca2+]i increase and its transcriptional activation of immediate early genes is important in the regulation of motility [J]. Experimental Cell Research, 1999, 246(2): 319−326. doi: 10.1006/excr.1998.4239
    [37]
    YANG W Q, KONG Z S, OMO-IKERODAH E, et al. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.) [J]. Journal of Genetics and Genomics, 2008, 35(9): 531−543. doi: 10.1016/S1673-8527(08)60073-9
    [38]
    OHBA H, STEWARD N, KAWASAKI S, et al. Diverse response of rice and maize genes encoding homologs of WPK4, an SNF1-related protein kinase from wheat, to light, nutrients, low temperature and cytokinins [J]. Molecular and General Genetics, 2000, 263(2): 359−366. doi: 10.1007/s004380051179
    [39]
    KIM K N, LEE J S, HAN H E, et al. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts [J]. Plant Molecular Biology, 2003, 52(6): 1191−1202. doi: 10.1023/B:PLAN.0000004330.62660.a2
    [40]
    LEE K W, CHEN P W, LU C A, et al. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding [J]. Science Signaling, 2009, 2(91): ra61.
    [41]
    HUANG F, LIAN L, HE W, et al. Genome-wide profiling of changes in gene expression in response to infection of the japonica rice variety Yunyin by Magnaporthe oryzae [J]. Molecular Breeding, 2014, 34(4): 1965−1974. doi: 10.1007/s11032-014-0155-7
    [42]
    DENG X M, HU W, WEI S Y, et al. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco [J]. PLoS One, 2013, 8(7): e69881. doi: 10.1371/journal.pone.0069881
    [43]
    CANNON S B, MITRA A, BAUMGARTEN A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J]. BMC Plant Biology, 2004, 4(1): 10. doi: 10.1186/1471-2229-4-10
    [44]
    ZHU J K, LIU J P, XIONG L M. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition [J]. The Plant Cell, 1998, 10(7): 1181−1191. doi: 10.1105/tpc.10.7.1181
    [45]
    LI L, KIM B G, CHEONG Y H, et al. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12625−12630. doi: 10.1073/pnas.0605129103
    [46]
    XU J, LI H D, CHEN L Q, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis [J]. Cell, 2006, 125(7): 1347−1360. doi: 10.1016/j.cell.2006.06.011
    [47]
    MARTÍNEZ -ATIENZA J, JIANG X Y, GARCIADEBLAS B, et al. Conservation of the salt overly sensitive pathway in rice [J]. Plant Physiology, 2007, 143(2): 1001−1012. doi: 10.1104/pp.106.092635
    [48]
    HAYASHI K, YOSHIDA H, ASHIKAWA I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes [J]. Theoretical and Applied Genetics, 2006, 113(2): 251−260. doi: 10.1007/s00122-006-0290-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (3630) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return