Citation: | YU S S, LUO X, LIAN L, et al. Identification of CIPK Family in Rice and qRT-PCR Analysis on OsCIPK5 Induced by Magnaporthe oryzae [J]. Fujian Journal of Agricultural Sciences,2019,34(11):1237−1245. doi: 10.19303/j.issn.1008-0384.2019.11.001 |
[1] |
BAUM G, LONG J C, JENKINS G I, et al. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+ [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(23): 13554−13559. doi: 10.1073/pnas.96.23.13554
|
[2] |
EVANS N H, MCAINSH M R, HETHERINGTON A M. Calcium oscillations in higher plants [J]. Current Opinion in Plant Biology, 2001, 4(5): 415−420. doi: 10.1016/S1369-5266(00)00194-1
|
[3] |
KNIGHT H, KNIGHT M R. Abiotic stress signalling pathways: specificity and cross-talk [J]. Trends in Plant Science, 2001, 6(6): 262−267. doi: 10.1016/S1360-1385(01)01946-X
|
[4] |
MACROBBIE E A C. ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+(Rb+) release [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(22): 12361−12368. doi: 10.1073/pnas.220417197
|
[5] |
SANDERS D, BROWNLEE C, HARPER J F. Communicating with calcium [J]. The Plant Cell, 1999, 11(4): 691. doi: 10.1105/tpc.11.4.691
|
[6] |
CHENG S H, WILLMANN M R, CHEN H C, et al. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family [J]. Plant Physiology, 2002, 129(2): 469−485. doi: 10.1104/pp.005645
|
[7] |
HARMON A C, GRIBSKOV M, GUBRIUM E, et al. The CDPK superfamily of protein kinases [J]. New Phytologist, 2001, 151(1): 175−183. doi: 10.1046/j.1469-8137.2001.00171.x
|
[8] |
LUAN S, RODRIGUEZCONCEPCION M, YALOVSKY S, et al. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants [J]. The Plant Cell, 2002, 14: S389−400. doi: 10.1105/tpc.001115
|
[9] |
SNEDDEN W A, FROMM H. Calmodulin as a versatile calcium signal transducer in plants [J]. New Phytologist, 2001, 151(1): 35−66. doi: 10.1046/j.1469-8137.2001.00154.x
|
[10] |
ZIELINSKI R E. Calmodulin and calmodulin-binding proteins in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49(1): 697−725. doi: 10.1146/annurev.arplant.49.1.697
|
[11] |
LIU J, ISHITANI M, HALFTER U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(7): 3730−3734. doi: 10.1073/pnas.97.7.3730
|
[12] |
ISHITANI M, LIU J P, HALFTER U, et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding [J]. The Plant Cell, 2000, 12(9): 1667−1677. doi: 10.1105/tpc.12.9.1667
|
[13] |
SÁNCHEZ-BARRENA M J, MARTÍNEZ-RIPOLL M, ZHU J K, et al. The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response [J]. Journal of Molecular Biology, 2005, 345(5): 1253−1264. doi: 10.1016/j.jmb.2004.11.025
|
[14] |
GONG D M, GUO Y, SCHUMAKER K S, et al. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis [J]. Plant Physiology, 2004, 134(3): 919−926. doi: 10.1104/pp.103.037440
|
[15] |
SHI H Z, ISHITANI M, KIM C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6896−6901. doi: 10.1073/pnas.120170197
|
[16] |
QIU Q S, GUO Y, DIETRICH M A, et al. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 8436−8441. doi: 10.1073/pnas.122224699
|
[17] |
QIU Q S, GUO Y, QUINTERO F J, et al. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway [J]. Journal of Biological Chemistry, 2004, 279(1): 207−215. doi: 10.1074/jbc.M307982200
|
[18] |
XIONG L M, SCHUMAKER K S, ZHU J K. Cell signaling during cold, drought, and salt stress [J]. The Plant Cell, 2002, 14(S1): S165−183.
|
[19] |
ZHU J K. Salt and drought stress signal transduction in plants [J]. Annual Review of Plant Biology, 2002, 53(1): 247−273. doi: 10.1146/annurev.arplant.53.091401.143329
|
[20] |
KOLUKISAOGLUÜ, WEINL S, BLAZEVIC D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiology, 2004, 134(1): 43−58. doi: 10.1104/pp.103.033068
|
[21] |
XIANG Y, HUANG Y M, XIONG L Z. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement [J]. Plant Physiology, 2007, 144(3): 1416−1428. doi: 10.1104/pp.107.101295
|
[22] |
CHEN X F, GU Z M, LIU F, et al. Molecular analysis of rice CIPKs involved in both biotic and abiotic stress responses [J]. Rice Science, 2011, 18(1): 1−9. doi: 10.1016/S1672-6308(11)60001-2
|
[23] |
HOLUB E B. The arms race is ancient history in Arabidopsis, the wildflower [J]. Nature Reviews Genetics, 2001, 2(7): 516−527. doi: 10.1038/35080508
|
[24] |
YU Y H, XIA X L, YIN W L, et al. Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus [J]. Plant Growth Regulation, 2007, 52(2): 101−110. doi: 10.1007/s10725-007-9165-3
|
[25] |
KANWAR P, SANYAL S K, TOKAS I, et al. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice [J]. Cell Calcium, 2014, 56(2): 81−95. doi: 10.1016/j.ceca.2014.05.003
|
[26] |
ROY S W, PENNY D. Patterns of intron loss and gain in plants: intron loss–dominated evolution and genome-wide comparison of O. sativa and A. thaliana [J]. Molecular Biology and Evolution, 2007, 24(1): 171−181.
|
[27] |
NURUZZAMAN M, MANIMEKALAI R, SHARONI A M, et al. Genome-wide analysis of NAC transcription factor family in rice [J]. Gene, 2010, 465(1/2): 30−44.
|
[28] |
KLEIST T J, SPENCLEY A L, LUAN S. Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages [J]. Frontiers in Plant Science, 2014(5): 187.
|
[29] |
ZHANG H F, YANG B, LIU W Z, et al. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.) [J]. BMC Plant Biology, 2014, 14(1): 8. doi: 10.1186/1471-2229-14-8
|
[30] |
KUDLA J, BATISTIČ O, HASHIMOTO K. Calcium signals: the lead currency of plant information processing [J]. The Plant Cell, 2010, 22(3): 541−563. doi: 10.1105/tpc.109.072686
|
[31] |
HU H C, WANG Y Y, TSAY Y F. AtCIPK8, a CBL‐interacting protein kinase, regulates the low-affinity phase of the primary nitrate response [J]. Plant Journal, 2009, 57(2): 264−278. doi: 10.1111/j.1365-313X.2008.03685.x
|
[32] |
CHUNG E, PARK J M, OH S K, et al. Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses [J]. Planta, 2004, 220(2): 286−295. doi: 10.1007/s00425-004-1372-9
|
[33] |
LUDWIG A A, SAITOH H, FELIX G, et al. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10736−10741. doi: 10.1073/pnas.0502954102
|
[34] |
FROHNMEYER H, LOYALL L, BLATT M R, et al. Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+ and stimulates gene expression in transgenic parsley cell cultures [J]. Plant Journal, 1999, 20(1): 109−117. doi: 10.1046/j.1365-313X.1999.00584.x
|
[35] |
TREWAVAS A J, MALHÓ R. Ca2+ signalling in plant cells: the big network! [J]. Current Opinion in Plant Biology, 1998, 1(5): 428−443. doi: 10.1016/S1369-5266(98)80268-9
|
[36] |
TRAN P O T, HINMAN L E, UNGER G M, et al. A wound-induced[Ca2+]i increase and its transcriptional activation of immediate early genes is important in the regulation of motility [J]. Experimental Cell Research, 1999, 246(2): 319−326. doi: 10.1006/excr.1998.4239
|
[37] |
YANG W Q, KONG Z S, OMO-IKERODAH E, et al. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.) [J]. Journal of Genetics and Genomics, 2008, 35(9): 531−543. doi: 10.1016/S1673-8527(08)60073-9
|
[38] |
OHBA H, STEWARD N, KAWASAKI S, et al. Diverse response of rice and maize genes encoding homologs of WPK4, an SNF1-related protein kinase from wheat, to light, nutrients, low temperature and cytokinins [J]. Molecular and General Genetics, 2000, 263(2): 359−366. doi: 10.1007/s004380051179
|
[39] |
KIM K N, LEE J S, HAN H E, et al. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts [J]. Plant Molecular Biology, 2003, 52(6): 1191−1202. doi: 10.1023/B:PLAN.0000004330.62660.a2
|
[40] |
LEE K W, CHEN P W, LU C A, et al. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding [J]. Science Signaling, 2009, 2(91): ra61.
|
[41] |
HUANG F, LIAN L, HE W, et al. Genome-wide profiling of changes in gene expression in response to infection of the japonica rice variety Yunyin by Magnaporthe oryzae [J]. Molecular Breeding, 2014, 34(4): 1965−1974. doi: 10.1007/s11032-014-0155-7
|
[42] |
DENG X M, HU W, WEI S Y, et al. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco [J]. PLoS One, 2013, 8(7): e69881. doi: 10.1371/journal.pone.0069881
|
[43] |
CANNON S B, MITRA A, BAUMGARTEN A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J]. BMC Plant Biology, 2004, 4(1): 10. doi: 10.1186/1471-2229-4-10
|
[44] |
ZHU J K, LIU J P, XIONG L M. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition [J]. The Plant Cell, 1998, 10(7): 1181−1191. doi: 10.1105/tpc.10.7.1181
|
[45] |
LI L, KIM B G, CHEONG Y H, et al. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12625−12630. doi: 10.1073/pnas.0605129103
|
[46] |
XU J, LI H D, CHEN L Q, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis [J]. Cell, 2006, 125(7): 1347−1360. doi: 10.1016/j.cell.2006.06.011
|
[47] |
MARTÍNEZ -ATIENZA J, JIANG X Y, GARCIADEBLAS B, et al. Conservation of the salt overly sensitive pathway in rice [J]. Plant Physiology, 2007, 143(2): 1001−1012. doi: 10.1104/pp.106.092635
|
[48] |
HAYASHI K, YOSHIDA H, ASHIKAWA I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes [J]. Theoretical and Applied Genetics, 2006, 113(2): 251−260. doi: 10.1007/s00122-006-0290-6
|