Citation: | LIU Hua-qing, SUN Qing-shan, YANG Shao-hua, ZHOU Shu-fen, WANG Feng. Morphological Alternation of Rice Plant by Site-Directed Mutagenesis on IPA1 Gene[J]. Fujian Journal of Agricultural Sciences, 2019, 34(8): 867-872. doi: 10.19303/j.issn.1008-0384.2019.08.001 |
[1] |
袁隆平.杂交水稻超高产育种[J].杂交水稻, 1997, 12(6):1-3. http://d.old.wanfangdata.com.cn/Periodical/nmzfzy201520059
YUAN L P.Hybrid rice breeding for super high yield[J].Hybrid Rice, 1997, 12(6):1-3.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/nmzfzy201520059
|
[2] |
杨守仁.水稻超高产育种问题探讨[J].中国农学通报, 1990, 6(3):5-8. http://d.old.wanfangdata.com.cn/Periodical/shandnykx200801004
YANG S R. Discussion on rice breeding for super high yield[J].Chinese Agricultural Science Bulletin, 1990, 6(3):5-8.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/shandnykx200801004
|
[3] |
GAJ T, GERSBACH C A, BARBAS Ⅲ C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol, 2013, 31: 397-405. doi: 10.1016/j.tibtech.2013.04.004
|
[4] |
王福军, 赵开军.基因组编辑技术应用于作物遗传改良的进展与挑战[J].中国农业科学, 2018, 51(1):1-16. http://d.old.wanfangdata.com.cn/Periodical/zgnykx201801001
WANG F J, ZHAO K J.Progress and challenge of crop genetic improvement via genome editing[J].Scientia Agricultura Sinica, 2018, 51(1):1-16.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgnykx201801001
|
[5] |
JIAO Y, WANG Y, XUE D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat Genet, 2010, 42(6): 541-544. doi: 10.1038/ng.591
|
[6] |
MIURA K, IKEDA M, MATSUBARA A, et al.OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nat Genet, 2010, 42:545-549. doi: 10.1038/ng.592
|
[7] |
LU Z, YU H, XIONG G, et al. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture[J]. Plant Cell, 2013, 25(10): 3743-3759. doi: 10.1105/tpc.113.113639
|
[8] |
张建新, 郑家团, 谢华安, 等.水稻新株型明恢86及其系列组合的选育研究[J].江西农业大学学报, 2000, 22 (4):485-490. doi: 10.3969/j.issn.1000-2286.2000.04.004
ZHANG J X, ZHENG J T, XIE H A, et al. Breeding of the rice ideal plant type minghui86 and its combinations[J]. Acta Agriculturae Universitis Jiangxiensis, 2000, 22 (4):485-490.(in Chinese) doi: 10.3969/j.issn.1000-2286.2000.04.004
|
[9] |
HEIGWER F, KERR G, WALTHER N, et al. E-TALEN: a web tool to design TALENs for genome engineering[J].Nucleic Acids Res, 2013, 41: e190. doi: 10.1093/nar/gkt789
|
[10] |
苏军, 胡昌泉, 翟红利, 等.农杆菌介导籼稻明恢86高效稳定转化体系的建立[J]; 福建农业学报, 2003, 18(4):209-213. doi: 10.3969/j.issn.1008-0384.2003.04.003
SU J, HU C Q, ZHAI H L, et al.Establishment of a highly efficient and stable tranf orming system mediated by Agrobacterium tumefacien in indica rice[J].Fujian Journal of Agricultural Sciences, 2003, 18(4):209-213.(in Chinese) doi: 10.3969/j.issn.1008-0384.2003.04.003
|
[11] |
YOSHIDA S.Physiological aspects of grain yield[J]. Annu Rev Plant Physiol, 1972, 23:437-464. doi: 10.1146/annurev.pp.23.060172.002253
|
[12] |
DONALD C M.The breeding of crop ideotypes[J]. Euphytica, 1968, 17:385-403. doi: 10.1007/BF00056241
|
[13] |
HAMBLIN J. The ideotype concept: Useful or outdated[M]//BUXTON D R, SHIBLES R, FORXBERG R A, et al.International Crop Science I. Madison: Crop Science Society of America, Inc Press, 1993: 589-597.
|
[14] |
REYNOLDS M P, ACEVEDO E, SAYRE K D, et al. Yield potential in modern wheat varieties: its association with a less competitive ideotype[J]. Field Crops Res, 1994, 37:149-160. doi: 10.1016/0378-4290(94)90094-9
|
[15] |
DONALD C M. A barley breeding program based on an ideotype[J]. J Agric Sci, 1979, 93:261-269. doi: 10.1017/S0021859600037941
|
[16] |
RASMUSSON D C. A plant breeder's experience with ideotype breeding[J]. Field Crops Res, 1991, 26: 191-200. doi: 10.1016/0378-4290(91)90035-T
|
[17] |
KOKUBUN M. Design and examination of soybean ideotypes[J]. Japan Agric Res Quart, 1988, 21:237-243.
|
[18] |
PENG S, KHUSH G S, CASSMAN K G. Evolution of the new plant ideotype for increased yield potential[M]//CASSMAN K G. Breaking the Yield Barrier. Los Ba os: International Rice Research Institute Press, 1994: 5-20.
|
[19] |
KHUSH G S. Breaking the yield frontier of rice[J]. GeoJournal, 1995, 35:29-332. doi: 10.1007/BF00812620
|
[20] |
PENG S. KHUSH G S, VIRK P, et al.Progress in ideotype breeding to increase rice yield potential[J]. Field Crops Res, 2008, 108: 32-38. doi: 10.1016/j.fcr.2008.04.001
|
[21] |
MARSHALL D R. Alternative approaches and perspectives in breeding for higher yields[J]. Field Crops Res, 1991, 26: 171-190. doi: 10.1016/0378-4290(91)90034-S
|
[22] |
ZHANG L, YU H, MA B, et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice[J]. Nat Commun, 2017, 8:14789. doi: 10.1038/ncomms14789
|
[23] |
WANG J, YU H, XIONG G, et al. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice[J]. Plant Cell, 2017, 29:697-707. doi: 10.1105/tpc.16.00879
|
[24] |
SONG X, LU Z, YU H.et al. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice[J]. Cell Res, 2017, 27:1128-1141. doi: 10.1038/cr.2017.102
|
[25] |
LI M, LI X, ZHOU Z, et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system[J]. Front Plant Sci, 2016, 7:377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004616239
|
[26] |
ORDONIO R L, MATSUOKA M.New path towards a better rice architecture[J].Cell Res, 2017, 27:1189-1190. doi: 10.1038/cr.2017.115
|