Citation: | Xue-ru YU, Ju-yuan WANG, Cui-ping WANG, Xiao-fei TIAN, Shu-chen SUN, Ping WANG, Ru-yue XU, Sheng ZHAI. Research Advances on Plant Toxicity Induced by Nanoparticles of Rare Earth Oxide[J]. Fujian Journal of Agricultural Sciences, 2019, 34(6): 739-747. doi: 10.19303/j.issn.1008-0384.2019.06.016 |
[1] |
LEAD J R, BATLEY G E, ALVAREZ P J J, et al.Nanomaterials in the environment: behavior, fate, bioavailability, and effects-an updated review, 2018: 2029-2063.
|
[2] |
NATASHA G.Nanoparticle safety in doubt[J]. Nature, 2009, 460(7258):937. doi: 10.1038/460937a
|
[3] |
JUDY J D, UNRINE J MBERTSCH P M.Evidence for biomagnification of gold nanoparticles within a terrestrial food chain[J]. Environmental Science & Technology, 2010, 45(2):776-781. doi: 10.1021-es103031a/
|
[4] |
STEGEMEIER J P, COLMAN B P, SCHWAB F, et al.Uptake and distribution of silver in the aquatic plant Landoltia punctata (duckweed) exposed to silver and silver sulfide nanoparticles[J]. Environmental Science & Technology, 2017, 51(9):4936-4943. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78db38add7cc272c535f6ab2e38bea95
|
[5] |
CHEN G, MA C, MUKHERJEE A, et al.Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin:a physiological and molecular response[J]. Nanotoxicology, 2016, 10(9):1243-1253. doi: 10.1080/17435390.2016.1202349
|
[6] |
ZHANG Z, HE X, ZHANG H, et al.Uptake and distribution of ceria nanoparticles in cucumber plants[J]. Metallomics, 2011, 3(8):816-822. doi: 10.1039/c1mt00049g
|
[7] |
ZHANG P, MA Y H, ZHANG Z Y.Interactions between engineered nanomaterials and plants:phytotoxicity, uptake, translocation, and biotransformation, in Nanotechnology and Plant Sciences[J]. Springer, 2015:77-99. doi: 10.1007%2F978-3-319-14502-0_5
|
[8] |
JONES D L.Organic acids in the rhizosphere-a critical review[J]. Plant and Soil, 1998, 205(1):25-44. doi: 10.1023/A:1004356007312
|
[9] |
LÓPEZ-MORENO M L, DE LA ROSA G, HERNÁNDEZ-VIEZCAS J Á, et al.Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants[J]. Environmental Science & Technology, 2010, 44(19):7315-7320. doi: 10.1021-es903891g/
|
[10] |
ZHAO L, SUN Y, HERNANDEZ-VIEZCAS J A, et al.Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn:a life cycle study[J]. Journal of Agricultural and Food Chemistry, 2013, 61(49):11945-11951. doi: 10.1021/jf404328e
|
[11] |
XIA T, KOVOCHICH M, LIONG M, et al.Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS Nano, 2007, 2(1):85-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01a1115ad025a2223879984510fee79f
|
[12] |
MA C, CHHIKARA S, XING B, et al.Physiological and molecular response of Arabidopsis thaliana L. to nanoparticle cerium and indium oxide exposure[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7):768-778. https://www.researchgate.net/publication/256843025_Physiological_and_Molecular_Response_of_Arabidopsis_thaliana_L_to_Nanoparticle_Cerium_and_Indium_Oxide_Exposure
|
[13] |
MAJUMDAR S, PERALTA-VIDEA J R, BANDYOPADHYAY S, et al.Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms[J]. Journal of Hazardous Materials, 2014, 278:279-287. doi: 10.1016/j.jhazmat.2014.06.009
|
[14] |
LIMBACH L K, LI Y, GRASS R N, et al.Oxide nanoparticle uptake in human lung fibroblasts:effects of particle size, agglomeration, and diffusion at low concentrations[J]. Environmental Science & Technology, 2005, 39(23):9370-9376. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM16382966
|
[15] |
WYTTENBACH A, FURRER V, SCHLEPPI P, et al.Rare earth elements in soil and in soil-grown plants[J]. Plant and Soil, 1998, 199(2):267-273. doi: 10.1023/A:1004331826160
|
[16] |
YANG KXING B.Adsorption of fulvic acid by carbon nanotubes from water[J]. Environmental Pollution, 2009, 157(4):1095-1100. doi: 10.1016/j.envpol.2008.11.007
|