• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
LIN Yan, LIU Hua-qing, FU Yan-ping, WU Ming-ji. TALEN-mediated Editing of Photoperiod-temperature-sensitive Male Sterility PMS3 Gene in Rice[J]. Fujian Journal of Agricultural Sciences, 2019, 34(4): 381-386. DOI: 10.19303/j.issn.1008-0384.2019.04.001
Citation: LIN Yan, LIU Hua-qing, FU Yan-ping, WU Ming-ji. TALEN-mediated Editing of Photoperiod-temperature-sensitive Male Sterility PMS3 Gene in Rice[J]. Fujian Journal of Agricultural Sciences, 2019, 34(4): 381-386. DOI: 10.19303/j.issn.1008-0384.2019.04.001

TALEN-mediated Editing of Photoperiod-temperature-sensitive Male Sterility PMS3 Gene in Rice

More Information
  • Received Date: March 16, 2019
  • Revised Date: April 07, 2019
  •   Objective  TALEN technology was employed to alter the original mutant region in pms3 gene of rice for creating different genotypes of small RNA osa-smR5864 mutants in studying the photoperiod-temperature-sensitive male sterility (PTGMS) phenotypes of pms3 mutants to provide information for breeding two-line sterile rice by means of targeted editing of PMS3.
      Method  The TALEN-PMS3 vector was constructed and transformed into Nipponbare and Minghui 86 with the pms3 mutants identified by sequencing. The T2 generation of the mutants were planted under the natural long-day-high-temperature conditions in Fuzhou. The male fertility and seed setting rates of the mutants were determined.
      Result  Among the 25 transgenic plants regenerated, 4 clones of Nipponbare and 5 of Minghui 86 contained the target mutation with the mutation rates of 40% and 33.3%, respectively. The non-transgenic mutant plants were obtained in T1 generations. The sequencing showed 3 homozygous mutation genotypes in Nipponbare and 5 in Minghui 86 background. Under the natural long-day-high-temperature, the T2 pms3 mutants developed normal fertile pollens with a normal seed setting rate. But the pms3 mutants did not show a PTGMS similar to P64S.
      Conclusion  The multiple genotypes of pms3 mutants were successfully obtained. However, no PTGMS phenotype could be generated. It suggested that the molecular mechanism of pms3 locus regulating the rice PTGMS was highly complex.
  • [1]
    石明松.对光照长度敏感的隐性雄性不育水稻的发现与初步研究[J].中国农业科学, 1985(2):44-48.

    SHI M S. The discovery and study of the photosensitive recessive male-sterile rice[J]. Scientia Agricultura Sinica, 1985(2):44-48.(in Chinese)
    [2]
    张华丽, 陈晓阳, 黄建中, 等.中国两系杂交水稻光温敏核不育基因的鉴定与演化分析[J].中国农业科学, 2015, 48(1):1-9. http://d.old.wanfangdata.com.cn/Periodical/zgnykx201501001

    ZHANG H L, CHEN X Y, HUANG J Z, et al. Identification and Transition Analysis of Photo-/Thermo-Sensitive Genic Male Sterile Genes in Two-Line Hybrid Rice in China[J]. Scientia Agricultura Sinica, 2015, 48(1):1-9.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgnykx201501001
    [3]
    梅明华, 陈亮, 章志宏, 等.农垦58S光敏不育基因突变位点的确定及pms3区间的进一步作图[J].中国科学, 1999, 29(3):310-315.

    MEI M H, CHEN L, ZHANG Z H, et al. Identification of mutation site of Nongken 58S photosensitive sterility gene and further mapping of pms3[J]. Scientia Sinica, 1999, 29(3):310-315.(in Chinese)
    [4]
    MEI M, CHENG L, ZHANG Z, et al. pms3 is the locus causing the original photoperiod-sensitive male sterility mutation of Nongken 58S[J]. Science in China Ser C, 1999, 42(3):316-322. DOI: 10.1007/BF03183609
    [5]
    DING J, LU Q, OUYANG Y, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proceedings of the National Academy of Sciences, 2012, 109(7):2654-2659. DOI: 10.1073/pnas.1121374109
    [6]
    ZHOU H, LIU Q, LI J, et al. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research, 2012, 22:649-660. DOI: 10.1038/cr.2012.28
    [7]
    VOYTAS D F. Plant Genome Engineering with Sequence-Specific Nucleases[J]. Annual Review of Plant Biology, 2013, 64:327-350. DOI: 10.1146/annurev-arplant-042811-105552
    [8]
    SHAN Q, ZHANG Y, CHEN K, et al.Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant Biotechnology Journal, 2015, 13(6):791-800. DOI: 10.1111/pbi.2015.13.issue-6
    [9]
    SHAN Q, WANG Y, CHEN K, et al. Rapid and efficient gene modification in rice and brachypodium using TALENs[J]. Molecular Plant, 2013, 6(4):1365-1368. DOI: 10.1093/mp/sss162
    [10]
    SHAN Q, WANG Y, LI J, et al. Genome editing in rice and wheat using the CRISPR/Cas system[J]. Nature Protocol, 2014(9):2395-2410.
    [11]
    ZHANG H, ZHANG J, WEI P, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnology Journal, 2014(12):797-807. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99f8d5380d244943ab23c6341ab953a8
    [12]
    邵高能, 谢黎虹, 焦桂爱, 等.利用CRISPR/CAS9技术编辑水稻香味基因Badh2[J].中国水稻科学, 2017, 31(2):216-222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsdkx201702011

    SHAO G N, XIE L H, JIAO G A, et al. CRISPR/CAS9-mediated Editing of the Fragrant Gene Badh2 in Rice[J]. Chinese Journal of Rice Science, 2017, 31(2):216-222.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsdkx201702011
    [13]
    苏军, 胡昌泉, 翟红利, 等.农杆菌介导籼稻明恢86高效稳定转化体系的建立[J].福建农业学报, 2003, 18(4):209-213. DOI: 10.3969/j.issn.1008-0384.2003.04.003

    SU J, HU C Q, ZHAI H L, et al. Establishment of a highly efficient and stable tranf orming system mediated by Agrobacterium tumefacie in indica rice[J]. Fujian Journal of Agricultural Sciences, 2003, 18(4):209-213.(in Chinese) DOI: 10.3969/j.issn.1008-0384.2003.04.003
    [14]
    ZHANG G, GAO M, ZHANG G, et al. A high through-put protocol of plant genomic DNA preparation for PCR[J]. Acta Agronomica Sinica, 2013, 39(7):1200-1205.(in Chinese) DOI: 10.3724/SP.J.1006.2013.01200
    [15]
    王风平, 梅明华.光敏核不育水稻农垦58S与正常品种农垦58在pms1区段无育性基因分离[J].植物学报, 1997, 39(10):922-925.

    WANG F P, MEI M H. pms1 is not the locus relevant to fertility difference between the photoperiod-sensitive male sterile rice Nongken 58S and normal rice "Nongken 58S"[J]. Acta Botanica Sinica, 1997, 39(10):922-925.(in Chinese)
    [16]
    张端品, 邓训安, 余功新, 等.农垦58S光敏感雄性不育基因的染色体定位[J].华中农业大学学报, 1990, 9(4):407-419. DOI: 10.3321/j.issn:1000-2421.1990.04.024

    ZHANG D P, DENG X A, YU G X, et al. Chromosomal localization of Nongken 58S light sensitive male sterility gene[J]. Journal of Huazhong Agricultural University, 1990, 9(4):407-419.(in Chinese) DOI: 10.3321/j.issn:1000-2421.1990.04.024
    [17]
    FAN Y, YANG J, MATHIONI SM, et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice[J]. Proceedings of the National Academy of Sciences, 2016, 113(52):15144-15149. DOI: 10.1073/pnas.1619159114
  • Related Articles

    [1]WU Min, HUANG Juan, SHI Taoxiong, ZHU Liwei, DENG Jiao, LIANG Chenggang, WANG Yan, LIU Fei, LI Rong, CAI Fang, CHEN Qingfu. CRISPR/Cas9 Technology-generated High-amylose Rice Varieties[J]. Fujian Journal of Agricultural Sciences, 2024, 39(1): 17-24. DOI: 10.19303/j.issn.1008-0384.2024.01.003
    [2]LAN Hanhong, CHEN Haihuang, HUANG Weixin, HE Xinyi. Preparation of Polyclonal Antibody Containing CPN60-β for Controlling Rice Stripe Virus Disease[J]. Fujian Journal of Agricultural Sciences, 2021, 36(5): 512-517. DOI: 10.19303/j.issn.1008-0384.2021.05.003
    [3]WU Mingji, LIN Yan, LIU Huaqing, FU Yanping, SONG Yana, WANG Feng. Development of Fragrant Japonica Rice by CRISPR/Cas9-targeted Editing on Badh2[J]. Fujian Journal of Agricultural Sciences, 2020, 35(5): 465-473. DOI: 10.19303/j.issn.1008-0384.2020.05.001
    [4]DENG Ze-qin, HUANG Xian-bo, LIN Cheng-bao, TANG Jiang-xia, YE Yang-dong, SU Rong-li, LIANG Shui-jin. Improvement of Disease-resistance of Restorer Rice Lines by Transducing Genes Pi9 onto Sanming Dominant Male Sterile Lines[J]. Fujian Journal of Agricultural Sciences, 2020, 35(1): 6-12. DOI: 10.19303/j.issn.1008-0384.2020.01.002
    [5]LIU Hua-qing, SUN Qing-shan, YANG Shao-hua, ZHOU Shu-fen, WANG Feng. Morphological Alternation of Rice Plant by Site-Directed Mutagenesis on IPA1 Gene[J]. Fujian Journal of Agricultural Sciences, 2019, 34(8): 867-872. DOI: 10.19303/j.issn.1008-0384.2019.08.001
    [6]WU Ming-ji, LIN Yan, LIU Hua-qing, CHEN Jian-min, FU Yan-ping, YANG Shao-hua, WANG Feng. Development of Thermo-Sensitive Male Sterile Rice with CRISPR/Cas9 Technology[J]. Fujian Journal of Agricultural Sciences, 2018, 33(10): 1011-1015. DOI: 10.19303/j.issn.1008-0384.2018.10.001
    [7]YANG Shao-hua, CHEN Hui-mei, ZHOU Shu-fen. CRISPR/CAS9-mediated Editing for Pollen-specific OsIPA Genein Rice[J]. Fujian Journal of Agricultural Sciences, 2017, 32(11): 1173-1177. DOI: 10.19303/j.issn.1008-0384.2017.011.001
    [8]JIAO Yun, SHU Qiao-yun, LIU Zhu-qin. Single Nucleotide Polymorphism (SNP) Analysis of the Endopolygalacturonase Gene in Chinese Bayberry (Myrica rubra)[J]. Fujian Journal of Agricultural Sciences, 2016, 31(5): 465-470. DOI: 10.19303/j.issn.1008-0384.2016.05.005
    [9]LIN Ya-rong, ZHOU Shu-fen, ZHU Yi-wang, SUN Qing-shan, CHEN Hui-mei, WANG Feng. Genome Editing and Its Application for Genetic Improvements of Plants[J]. Fujian Journal of Agricultural Sciences, 2015, 30(5): 522-527. DOI: 10.19303/j.issn.1008-0384.2015.05.019
    [10]TANG Jiang-xia, LIN Cheng-bao, HUANG Xian-bo, DENG Ze-qin, LIN Mei-juan, LIANG Shui-jin. Transduction of Rice Blast Resistance Gene Pi-9 Using Sanming Dominant Genic Male Sterile as the Vector[J]. Fujian Journal of Agricultural Sciences, 2013, 28(9): 849-853. DOI: 10.19303/j.issn.1008-0384.2013.09.003
  • Cited by

    Periodical cited type(3)

    1. 杨大兵,胡亮,杜雪树,万丙良,夏明元,戚华雄,李进波. CRISPR/Cas9基因编辑技术创制水稻雄性不育系的研究进展. 中国农业科技导报(中英文). 2025(03): 24-34 .
    2. 唐杰,龙湍,吴春瑜,李新鹏,曾翔,吴永忠,黄培劲. 水稻光温敏雄性不育突变体tms3650的鉴定和基因定位. 中国水稻科学. 2023(01): 45-54 .
    3. 谭瑗瑗,汪庆,富昊伟,张渭章,吴三玲,舒庆尧. 利用花培与辐照诱变培育粳型两系不育系江79S. 核农学报. 2022(06): 1073-1079 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1283) PDF downloads (53) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return