Citation: | ZHANG Wu-jun, HUANG Ying-zhen, Zhao Yun-qing, LIU Bao-cai, CHEN Jing-ying. Effect of Drought Stress on Physiology of Camellia nitidissima Saplings[J]. Fujian Journal of Agricultural Sciences, 2018, 33(6): 614-620. doi: 10.19303/j.issn.1008-0384.2018.06.013 |
[1] |
韦霄, 蒋运生, 韦记青, 等.珍稀濒危植物金花茶地理分布与生境调查研究[J].生态环境学报, 2007, 16(3):895-899. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj200703039
|
[2] |
曹芬, 樊兰兰.金花茶研究进展[J].中国药业, 2013, 22(4):95-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zlzw201407019
|
[3] |
陈永欣, 吕淑娟, 韦锦斌.金花茶化学成分和药理作用研究进展[J].广西中医药, 2013, 36(1):4-6. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_zcy201112045
|
[4] |
郭建.金花茶等5种物品被批准为新资源食品[J].农产品加工, 2010, 1(6):39. http://www.cqvip.com/Main/Detail.aspx?id=34122035
|
[5] |
黄付平.金花茶林下人工栽培试验初报[J].广西林业科学, 2001, 30(3):125-128. http://www.cqvip.com/QK/90684A/200103/5769907.html
|
[6] |
李建基, 廖国英, 黄霖.金花茶林下种植栽培技术要点[J].农村经济与科技, 2016, 27(20):41-42. doi: 10.3969/j.issn.1007-7103.2016.20.029
|
[7] |
林植.金花茶在阔叶林林下种植技术初探[J].花卉, 2015, 1(22):10-11. doi: 10.3969/j.issn.1009-8496.2015.22.003
|
[8] |
柴胜丰, 唐健民, 王满莲, 等.干旱胁迫对金花茶幼苗光合生理特性的影响[J].西北植物学报, 2015, 35(2):322-328. doi: 10.7606/j.issn.1000-4025.2015.02.0322
|
[9] |
杨期和, 李旭群, 杨和生, 等.金花茶幼苗光合生理生态特性研究[J].北京林业大学学报, 2010, 32(2):57-63. https://www.wenkuxiazai.com/doc/5c32c3d980eb6294dd886c2f.html
|
[10] |
邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2003.
|
[11] |
王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2006.
|
[12] |
MOORE K. Measurement of lipid peroxidation[J]. Free Radical Research, 1998, 28(6):659. doi: 10.3109/10715769809065821
|
[13] |
CHAVES M M, FLEXAS J, PINHEIRO C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4):551. doi: 10.1093/aob/mcn125
|
[14] |
PINHEIRO C, CHAVES M M. Photosynthesis and drought:can we make metabolic connections from available data?[J]. Journal of Experimental Botany, 2011, 62(3):869. doi: 10.1093/jxb/erq340
|
[15] |
周光良, 罗杰, 胡红玲, 等.干旱胁迫对巨桉幼树生长及光合特性的影响[J].生态与农村环境学报, 2015, 31(6):888-894. doi: 10.11934/j.issn.1673-4831.2015.06.014
|
[16] |
裴斌, 张光灿, 张淑勇, 等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报, 2013, 33(5):1386-1396. http://www.cnki.com.cn/Article/CJFDTotal-STXB201305005.htm
|
[17] |
姬慧娟, 贾会霞, 章小铃, 等.干旱胁迫对红皮柳光合特性日变化及生长的影响[J].南京林业大学学报(自然科学版), 2016, 40(6):41-46. http://www.cnki.com.cn/Article/CJFDTotal-LYKJ201306003.htm
|
[18] |
FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J].Annu Rev Plant Physiol, 1982, 33(1):317-345. doi: 10.1146/annurev.pp.33.060182.001533
|
[19] |
汪本福, 黄金鹏, 杨晓龙, 等.干旱胁迫抑制作物光合作用机理研究进展[J].湖北农业科学, 2014, 53(23):5628-5632. http://www.cnki.com.cn/Article/CJFDTotal-LYKE201511015.htm
|
[20] |
邓旭, 董晨, 张广明.干旱对两种金花茶幼苗抗氧化能力及渗透物质含量的影响[J].热带作物学报, 2012, 33(6):1034-1039. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdzwxb201206013
|
[21] |
张雁霞, 李萍, 刘玉皎.西北地区蚕豆苗期干旱胁迫下表型差异性与抗旱性研究[J].东北农业大学学报, 2015, 46(9):30-37. http://cdmd.cnki.com.cn/Article/CDMD-10298-2008113038.htm
|
[22] |
朱教君, 康宏樟, 李智辉, 等.水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响[J].生态学报, 2005, 25(10):2527-2533. doi: 10.3321/j.issn:1000-0933.2005.10.010
|
[23] |
JUBANY-MARÍ T, MUNNÉ-BOSCH S, ALEGRE L. Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate[J]. Plant Physiology & Biochemistry Ppb. 2010, 48(5):351. http://linkinghub.elsevier.com/retrieve/pii/S0981942810000276
|
[24] |
邓仁菊, 卢扬, 曾宪浩, 等.持续干旱胁迫对青薯9号幼苗生长及生理特性的影响[J].西南农业学报, 2017, 30(2):291-295. http://www.cnki.com.cn/Article/CJFDTotal-ZJLK201503004.htm
|
[25] |
WU S, HU C, TAN Q, et al. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress[J]. Plant Physiology and Biochemistry, 2014, 83:365-374. doi: 10.1016/j.plaphy.2014.08.022
|
[26] |
杨柳, 何正军, 赵文吉, 等.狭叶红景天幼苗对水分及遮阴的生长及生理生化响应[J].生态学报, 2017, 37(14):4706-4714. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL200304011.htm
|
[27] |
季杨, 张新全, 彭燕, 等.干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响[J].草业学报, 2014, 23(3):144-151. doi: 10.11686/cyxb20140316
|