• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 32 Issue 9
Nov.  2017
Turn off MathJax
Article Contents
YANG Wei, YU Shou-hua. Video Monitoring Behaviors of Captive-farmed Porcupines[J]. Fujian Journal of Agricultural Sciences, 2017, 32(9): 1021-1025. doi: 10.19303/j.issn.1008-0384.2017.09.018
Citation: YANG Wei, YU Shou-hua. Video Monitoring Behaviors of Captive-farmed Porcupines[J]. Fujian Journal of Agricultural Sciences, 2017, 32(9): 1021-1025. doi: 10.19303/j.issn.1008-0384.2017.09.018

Video Monitoring Behaviors of Captive-farmed Porcupines

doi: 10.19303/j.issn.1008-0384.2017.09.018
  • Received Date: 2017-03-07
  • Rev Recd Date: 2017-06-01
  • Publish Date: 2017-09-28
  • To understand the living habits for remotely managing the breeding of captive-farmed porcupines, this study applied video to monitor and establish a recognition model with the aid of computation for the behaviors of the animals. Firstly, the mixed Gaussian background modeling was used to build a movement contour model of the porcupines in the pan. Using 3 chosen classifiers, the marked scenes of porcupine activities were categorized with an accuracy of 86.34%. Subsequently, ORB key points were introduced as an additional attribute for the classification which raised the accuracy to 93.23%. The resulting model could now recognize 7 basic behaviors, including resting, eating, drinking, excretion, and chewing an iron gate or a water trough, of porcupines in captivity.
  • loading
  • [1]
    陆明洲, 沈明霞, 丁永前等.畜牧信息智能监测研究进展[J].中国农业科学, 2012, 45(14):2939-2947. doi: 10.3864/j.issn.0578-1752.2012.14.017
    [2]
    OCZAK M, ISMAYILOVA G, COSTA A, et al. Analysis of aggressive behaviours of pigs by automatic video recordings[J]. Computers & Electronics in Agriculture, 2013, 99(C):209-217.
    [3]
    OTT S, MOONS C P H, KASHIHA M A, et al. Automated video analysis of pig activity at pen level highly correlates to human observations of behavioural activities[J]. Livestock Science, 2014, 160(1):132-137.
    [4]
    朱燕. 基于时空兴趣点的猪的跛脚行为识别[D]. 镇江: 江苏大学, 2016.
    [5]
    劳凤丹, 滕光辉, 李军, 等.机器视觉识别单只蛋鸡行为的方法[J].农业工程学报, 2012, 28(24):157-163. http://d.wanfangdata.com.cn/Periodical/nygcxb201224024
    [6]
    何东健, 孟凡昌, 赵凯旋, 等.基于视频分析的犊牛基本行为识别[J].农业机械学报, 2016, 47(9):294-300. doi: 10.6041/j.issn.1000-1298.2016.09.040
    [7]
    洪留荣.应用轮廓变化信息的实验鼠行为识别[J].计算机工程, 2014, 40(3):213-217, 223. http://d.wanfangdata.com.cn/Periodical/jsjgc201403045
    [8]
    赵利强. 基于移动轨迹分析的大鼠行为识别研究[D]. 杭州: 浙江大学, 2016.
    [9]
    陈吉宏, 俞守华, 区晶莹.猪舍智能监控系统中猪只识别算法研究[J].广东农业科学, 2011, 38(10):151-153. doi: 10.3969/j.issn.1004-874X.2011.10.056
    [10]
    陈显周, 俞守华, 区晶莹.异常挖掘在猪只行为数据分析上的应用[J].农业现代化研究, 2011, 32(S1):52-55.
    [11]
    许丹纯, 俞守华, 区晶莹等.可拓分析法在猪场环境安全预警中的应用[J].广东农业科学, 2011, 38(23):160-163. doi: 10.3969/j.issn.1004-874X.2011.23.054
    [12]
    周勇钧, 俞守华, 区晶莹.多特征Camshift和Kalman滤波结合的猪只智能跟踪[J].广东农业科学, 2013, 40(9):174-177, 188. http://d.wanfangdata.com.cn/Periodical/gdnykx201309049
    [13]
    YU S. Tracking Algorithm Based on Multi-feature Detection and Target Association of Pigs on Large-scale Pig Farms[J]. Journal of Information & Computational Science, 2015, 12(10):3837-3844.
    [14]
    SHI J. Good features to track[D].New York:Cornell University, 1993.
    [15]
    BAY H, ESS A, TUYTELAARS T, et al. Speeded-Up Robust Features[J]. Computer Vision & Image Understanding, 2008, 110(3):404-417. http://d.wanfangdata.com.cn/Periodical/jsjyyyj201303072
    [16]
    LINDEBERG T. Scale Invariant Feature Transform[J]. Scholarpedia, 2012, 7(5):2012-2021. http://d.wanfangdata.com.cn/Periodical/xtgcydzjs-e201506022
    [17]
    RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB:An efficient alternative to SIFT or SURF[C]//IEEE International Conference on Computer Vision. IEEE, 2011:2564-2571.
    [18]
    陶新民, 曹盼东, 宋少宇, 等.基于半监督高斯混合模型核的支持向量机分类算法[J].信息与控制, 2013, 42(1):18-26. http://d.wanfangdata.com.cn/Periodical/xxykz201301004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (1342) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return