Citation: | XIE Wan-feng, LI Hui-ming, HUANG Ai-zhen, FENG Li-zhen, ZHANG Fei-ping. The Dynamic Change of Gene Expression from Pinus massoniana in Response to Bursaphelenchus xylophilus Infestation[J]. Fujian Journal of Agricultural Sciences, 2017, 32(4): 403-409. doi: 10.19303/j.issn.1008-0384.2017.04.010 |
[1] |
ZHAO B G. Pine wilt disease in China[M]. Pine wilt disease Springer, 2008: 18-25.
|
[2] |
XU L, LIU Z Y, ZHANG K, et al. Characterization of the Pinus massoniana transcriptional response to Bursaphelenchus xylophilus infection using suppression subtractive hybridization[J]. International Journal of Molecular Sciences, 2013, 14(6): 11356-11375. doi: 10.3390/ijms140611356
|
[3] |
ZHENG H Y, XU M, XU F Y, et al. A comparative proteomics analysis of Pinus massoniana inoculated with Bursaphelenchus xylophilus[J]. Pakistan Journal of Botany, 2015, 47(4): 1271-1280.
|
[4] |
XIE W, HUANG A, LI H, et al. Identification and comparative analysis of microRNAs in Pinus massoniana infected by Bursaphelenchus xylophilus[J]. Plant Growth Regulation, 2016, doi: 10.1007/s10725-016-0221-8.
|
[5] |
LⅣAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262
|
[6] |
HIRAO T, FUKATSU E, WATANABE A. Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization[J]. BMC Plant Biology, 2012, 12(1): 13. doi: 10.1186/1471-2229-12-13
|
[7] |
SANTOS C S, PINHEIRO M, SILVA A I, et al. Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening[J]. BMC Genomics, 2012, 13(1): 599. doi: 10.1186/1471-2164-13-599
|
[8] |
DANGL J L, JONES J D. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001, 411(6839): 826-833. doi: 10.1038/35081161
|
[9] |
TAN S, WU S. Genome wide analysis of nucleotide-binding site disease resistance genes in Brachypodium distachyon[J]. Comparative and Functional Genomics, 2012:ID 418208.doi: 10.1155/2012/418208.
|
[10] |
ELLIS J, DODDS P, PRYOR T. Structure, function and evolution of plant disease resistance genes[J]. Current Opinion in Plant Biology, 2000, 3(4): 278-284. doi: 10.1016/S1369-5266(00)00080-7
|
[11] |
JONES J D, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. doi: 10.1038/nature05286
|
[12] |
HANIN M, BRINI F, EBEL C, et al. Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms[J]. Plant Signaling & Behavior, 2011, 6(10): 1503-1509.
|
[13] |
YAMAMOTO T, IKETANI H, IEKI H, et al. Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens[J]. Plant Cell Reports, 2000, 19(7): 639-646. doi: 10.1007/s002999900174
|
[14] |
NEUHAUS J M. Plant chitinases (pr-3, pr-4, pr-8, pr-11)[M]. Pathogenesis-related proteins in plants CRC Press, 1999:77-105.
|
[15] |
PETIT P, GRANIER T, D'ESTAINTOT B L, et al. Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis[J]. Journal of Molecular Biology, 2007, 368(5): 1345-1357. doi: 10.1016/j.jmb.2007.02.088
|
[16] |
CHAPPLE C. Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases[J]. Annual Review of Plant Biology, 1998, 49(1): 311-343. doi: 10.1146/annurev.arplant.49.1.311
|
[17] |
RENAULT H, BASSARD J E, HAMBERGER B, et al. Cytochrome P450-mediated metabolic engineering: current progress and future challenges[J]. Current Opinion in Plant Biology, 2014, 19(19C): 27-34.
|