Citation: | ZHANG Jie-wei, TANG Jiu-yang, CHEN Lan-fen, WANG Ning-lin, WANG Hong-zhi, WEI Jian-hua. Bioinformatics and Identification of eIF5A Gene Family in Phalaenopsis equestris (Schauer) Rchb. f.[J]. Fujian Journal of Agricultural Sciences, 2017, 32(11): 1218-1223. doi: 10.19303/j.issn.1008-0384.2017.011.010 |
[1] |
SHIN B S, KATOH T, GUTIERREZ E, et al. Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis[J]. Nucleic Acids Res, 2017, 45(14):8392-8402. doi: 10.1093/nar/gkx532
|
[2] |
KYRPIDES N C, WOESE C R. Universally conserved translation initiation factors[J]. Proc Natl Acad Sci USA, 1998, 95(1):224-228. doi: 10.1073/pnas.95.1.224
|
[3] |
SCHNIER J, SCHWELBERGER H G, SMIT-MCBRIDE Z, et al. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae[J]. Mol Cell Biol, 1991, 11(6):3105-3114. doi: 10.1128/MCB.11.6.3105
|
[4] |
KEMPER W M, BERRY K W, MERRICK W C. Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta[J]. J Biol Chem, 1976, 251(18):5551-5557. https://www.researchgate.net/publication/22190341_Purification_and_properties_of_rabbit_reticulocyte_protein_synthesis_initiation_factors_M2Ba_and_M2Bb
|
[5] |
BENNE R, HERSHEY J W. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes[J]. J Biol Chem, 1978, 253(9):3078-3087. https://www.researchgate.net/publication/22501363_Mechanism_of_action_of_protein-synthesis_initiation-factors_from_rabbit_reticulocytes
|
[6] |
THOMPSON J E, HOPKINS M T, TAYLOR C, et al. Regulation of senescence by eukaryotic translation initiation factor 5A:implications for plant growth and development[J]. Trends Plant Sci, 2004, 9(4):174-179. doi: 10.1016/j.tplants.2004.02.008
|
[7] |
HOPKINS M T, LAMPI Y, WANG T W, et al. Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis[J]. Plant Physiol, 2008, 148(1):479-489. doi: 10.1104/pp.108.118869
|
[8] |
FENG H, CHEN Q, FENG J, et al. Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death[J]. Plant Physiol, 2007, 144(3):1531-1545. doi: 10.1104/pp.107.098079
|
[9] |
MA F, LIU Z, WANG T, et al. Arabidopsis eIF5A3 influences growth and the response to osmotic and nutrient stress[J]. Plant Cell Environ, 2010, 33(10):1682-1696. doi: 10.1111/pce.2010.33.issue-10
|
[10] |
CAI J, LIU X, VANNESTE K, et al. The genome sequence of the orchid Phalaenopsis equestris[J]. Nat Genet, 2014, 47(1):186-186. https://www.researchgate.net/publication/283976835_Analysis_of_the_TCP_genes_expressed_in_the_inflorescence_of_the_orchid_Orchis_italica
|
[11] |
SIEVERS F, WILM A, DINEEN D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega[J]. Mol Syst Biol, 2011, 7(1):1429-1432. http://web.engr.illinois.edu/~warnow/aayushee-clustal-omega.pdf
|
[12] |
GEOURJON C, DELEAGE G. SOPMA:significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments[J]. Comput Appl Biosci, 1995, 11(6):681-684. https://www.researchgate.net/publication/14395480_SOPMA_Significant_improvements_in_protein_secondary_structure_prediction_by_consensus_prediction_from_multiple_alignments
|
[13] |
张演义, 吕福堂, 张全军, 等.葡萄MAPKK基因家族的识别与分析[J].西南农业学报, 2015, 28(4):1791-1797. http://www.chinaagrisci.com/article/2014/0578-1752-47-17-3444.html
|
[14] |
BAILEY T L, BODEN M, BUSKE F A, et al. MEME SUITE:Tools for motif discovery and searching[J]. Nucleic Acids Res, 2009, 37(S2):202-208. https://www.hsls.pitt.edu/obrc/index.php?page=URL1153939718
|
[15] |
张杰伟, 丁莉萍, 陈亚娟, 等.杨树磷酸肌醇特异性磷脂酶C基因家族鉴定与分析[J].福建农业学报, 2016, 31(11):185-190. http://www.fjnyxb.cn/CN/abstract/abstract3053.shtml
|
[16] |
LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and clustal X version 2.0[J]. Bioinformatics, 2007, 23(21):2947-2948. doi: 10.1093/bioinformatics/btm404
|
[17] |
邵龙婷, 郑唐春, 臧丽娜, 等.毛果杨Eukaryotic translation initiation factor 5A (eIF5A)同源基因的生物信息学分析[J].安徽农业大学学报, 2014, 41(1):141-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahnydxxb201401028
|
[18] |
周建平, 杨足君, 冯娟, 等.小麦蛋白翻译起始因子5A基因(eIF5A)的克隆与分析[J].遗传, 2006, 28(5):571-577. http://www.chinaagrisci.com/article/2014/0578-1752-47-19-3746.html
|
[19] |
TAMURA K, STECHER G, PETERSON D, et al. MEGA6:Molecular evolutionary genetics analysis version 6.0[J]. Mol Biol Evol, 2013, 30(12):2725-2729. doi: 10.1093/molbev/mst197
|
[20] |
NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol, 2006, 140(2):411-432. doi: 10.1104/pp.105.073783
|
[21] |
管阳, 王宏芝, 张杰伟, 等.毛白杨翻译起始因子基因PtoeIF5A2的克隆及其表达特性分析[J].林业科学, 2014, 50(2):63-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lykx201402010
|
[22] |
张利姣, 张杰伟, 陈亚娟, 等.毛白杨真核细胞翻译起始因子5A基因(PtoeIF5A4)的克隆与表达分析[J].农业生物技术学报, 2013, 21(8):949-956. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyswjsxb201308008
|
[23] |
LEBSKA M, CIESIELSKI A, SZYMONA L, et al. Phosphorylation of maize eIF5A by CK2:identification of phosphorylated residue and influence on intracellular localization of eIF5A[J]. J Biol Chem, 2010, 285(9):6217-6226. doi: 10.1074/jbc.M109.018770
|