Citation: | CHEN Jing, ZHENG Zhi-lin, LIN Yi, CAO Hong-li, CHEN Di, CHEN Gui-xin, YE Nai-xing. Selection and Validation of Reference Genes for Real-time Florescence Quantitative PCR Analysis on Gene Expression of White Tea[J]. Fujian Journal of Agricultural Sciences, 2017, 32(11): 1201-1206. doi: 10.19303/j.issn.1008-0384.2017.011.007 |
[1] |
马春雷. 茶树查尔酮异构酶、黄酮醇合成酶和无色花色素还原酶等基因的克隆与表达分析[D]. 北京: 中国农业科学院, 2007. http://d.wanfangdata.com.cn/Thesis/Y1056911
|
[2] |
史成颖, 李正国, 徐乾.茶愈伤组织实时定量PCR分析中内参基因的选取[J].安徽农业大学学报, 2014, 41(6):905-910. http://www.cnki.com.cn/Article/CJFDTotal-REST201405035.htm
|
[3] |
曾威, 赵昕梅, 薛佩, 等.茶树α-tubulin基因实时荧光定量RT-PCR方法的建立[J].生物技术通讯, 2012, 23(2):245-247. http://d.wanfangdata.com.cn/Periodical_swjstx201202023.aspx
|
[4] |
刘圆, 王丽鸳, 韦康, 等.不同氮处理茶树实时定量PCR内参基因筛选和验证[J].茶叶科学, 2016, 36(1):92-96. http://www.jabiotech.org/CN/abstract/abstract10710.shtml
|
[5] |
叶乃兴.白茶科学·技术与市场[M].北京:中国农业出版社, 2010:33-42.
|
[6] |
陈静, 俞滢, 张丹丹, 等.白茶萎凋过程中儿茶素合成关键酶基因表达分析[J].南方农业学报, 2016, 47(8):1364-1369. http://www.cnki.com.cn/Article/CJFDTotal-FJNX201509006.htm
|
[7] |
VANDESOMPELE J D P K P. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol, 2002, 7(3):H34.
|
[8] |
ANDERSEN C L J J L. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 15(64):5245-5250. http://cancerres.aacrjournals.org/content/64/15/5245/T1.expansion.html
|
[9] |
PFAFFL M W T A P C. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnol Lett, 2004, 6(26):509-515. http://www.gene-quantification.com/pfaffl-dechema-2003.pdf
|
[10] |
NICOT N H J L E. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress[J]. Journal of Experimental Botany, 1973, 2(3):295-309. https://academic.oup.com/jxb/article-abstract/56/421/2907/593469/Housekeeping-gene-selection-for-real-time-RT-PCR
|
[11] |
DIE J V R B N S. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions[J]. Planta, 2010, 232(1):145-153. doi: 10.1007/s00425-010-1158-1
|
[12] |
YI S, QIAN Y, HAN L, et al. Selection of reliable reference genes for gene expression studies in Rhododendron micranthum Turc[J]. Scientia Horticulturae, 2012, 138:128-133. doi: 10.1016/j.scienta.2012.02.013
|
[13] |
MIGOCKA M, PAPIERNIAK A. Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators[J]. Molecular Breeding, 2011, 28(3):343-357. doi: 10.1007/s11032-010-9487-0
|
[14] |
WANG H, CHEN S, JIANG J, et al. Reference gene selection for cross-species and cross-ploidy level comparisons in Chrysanthemum spp[J]. Scientific Reports, 2015, 15(4):112-116. http://www.ncbi.nlm.nih.gov/pubmed/25627791
|
[15] |
ZHANG D H, SUN Y L, ZHAO L, et al. Reference gene selection for quantitative real-time PCR normalization in Medicago Lupulina under zinc stres[J]. Zhongguo Huanjing Kexue/china Environmental Science, 2015, 35:833-838. https://www.researchgate.net/publication/288366698_Cloning_and_expression_analysis_of_a_LEAFY_gene_from_lotus_nelumbo_nucifera_gaertn
|
[16] |
LACERDA A L M, FONSECA L N, BLAWID R, et al. Reference Gene Selection for qPCR Analysis in Tomato-Bipartite Begomovirus Interaction and Validation in Additional Tomato-Virus Pathosystems[J]. Plos One, 2015, 10(8):1-17. http://ainfo.cnptia.embrapa.br/digital/bitstream/item/135008/1/document-1.pdf
|
[17] |
孙美莲. 茶儿茶素生物合成相关基因表达的实时荧光定量PCR分析[D]. 合肥: 安徽农业大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1735208
|
[18] |
郝姗. 茶树不同逆境条件下qRT-PCR适宜内参基因的筛选[D]. 南京: 南京农业大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2361490
|
[19] |
PAUL A, LAI L, AHUJA P S, et al. Alpha-tubulin (CsTUA) up-regulated during winter dormancy is a low temperature inducible gene in tea[Camellia sinensis (L.) O. Kuntze]. Mol Biol Rep, 2002, 39(4):3485-3490. doi: 10.1007/s11033-011-1121-7
|