Citation: | CHEN Xi, LI Ying-ying, SONG Tie-ying. Changes Induced by Probiotic, Enterococcus faecium, in Gut Microbiota of Post-weaning Piglet[J]. Fujian Journal of Agricultural Sciences, 2016, 31(10): 1091-1097. doi: 10.19303/j.issn.1008-0384.2016.10.017 |
[1] |
GASKINS H R. Swine nutrition[M]. 2nd ed. CRC Press, Boca Raton, FL, 2001:121-124.
|
[2] |
KELLY D, KING T. Gut environment of pigs[M]. Nottingham University Press, Nottingham, UK, 2001:456-458.
|
[3] |
李德发.猪的营养:第2版[M].北京:中国农业科学技术出版社, 2003:112-114.
|
[4] |
柳尧波, 凌泽春.猪胃肠道微生物菌群的研究现状浅析[J].山东农业科学, 2011, (10):90-94. http://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201110030.htm
|
[5] |
华均超, 张邦辉.微生态制剂对仔猪肠道微生态调控的研究与应用进展[J].中国饲料, 2011, (3):19-22. http://www.cnki.com.cn/Article/CJFDTOTAL-SLGZ201103007.htm
|
[6] |
OHASHI Y, USHIDA K.Health-beneficial effects of probioties:Its mode of action[J].Animal Science Journal, 2009, 80:361-371. doi: 10.1111/asj.2009.80.issue-4
|
[7] |
GAGGIA F, MATTARELLI P, BIAVAT I B, Probiotics and prebiotics in animal feeding for safe foods production[J]. Int J Food Microbiol, 2010, 141(1):15-28. http://www.academia.edu/9790465/Probiotics_and_prebiotics_in_animal_feeding_for_safe_food_production
|
[8] |
CAPORASO J G, LAUBER C L, WALTERS W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences 108(S1), 2011:4516-4522. http://www.pnas.org/content/108/Supplement_1/4516.full.pdf?with-ds=yes
|
[9] |
PEIFFER J A, SPOR A, KOREN O, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J].Proc Natl Acad Sci, 2013, 110(16):6548-6553. doi: 10.1073/pnas.1302837110
|
[10] |
EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature methods, 2013, 10:996-998. doi: 10.1038/nmeth.2604
|
[11] |
WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73:5261-5267. doi: 10.1128/AEM.00062-07
|
[12] |
ONDOV B D, BERGMAN N H, PHILLIPPY A M. Interactive metagenomic visualization in a Web browser[J]. BMC Bioinformatics, 2011, 12:385-385. doi: 10.1186/1471-2105-12-385
|
[13] |
KIM H B, BOREWICZ K, WHITE B A, et al. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs[J]. Veterinary Microbiology, 2011, 153:24-133. https://www.researchgate.net/profile/Srinand_Sreevatsan/publication/51206370_Longitudinal_investigation_of_the_age-related_bacterial_diversity_in_the_feces_of_commercial_pigs/links/02e7e53638ad9da92d000000.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
|
[14] |
YEN J T. Oxygen consumption and energy flux of porcine splanchnictissues[M]. St Malo, France, 1997.
|
[15] |
ECKBURG P B, BIK E M, BERNSTEIN C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308:1635-1638. doi: 10.1126/science.1110591
|
[16] |
LAMENDELLA R, DOMINGO J W S, GHOSH S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut[J]. BMC microbiology, 2011, (11):103. https://www.ncbi.nlm.nih.gov/pubmed/21575148
|
[17] |
LESER T D, AMENUVOR J Z, JENSEN T K, et al. Culture-independent analysis of gut bacteria:The pig gastrointestinal tract microbiota revisited[J]. Applied and Environmental Microbiology, 2002, 68:673-690. doi: 10.1128/AEM.68.2.673-690.2002
|
[18] |
QU A, BRULC J M, WILSON M K, et al. Comparative Metagenomics Reveals Host Specific Metavirulomes and Horizontal Gene Transfer Elements in the Chicken Cecum Microbiome[J]. PloS one, 2008, 3:19-19. http://www.citeulike.org/group/6072/article/4275880
|
[19] |
COLLIER C T, SMIRICKY-TJARDES M R, ALBIN D M, et al. Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters[J]. Journal of Animal Science, 2003, 81:3035-3045. doi: 10.2527/2003.81123035x
|
[20] |
RETTEDAL E, VILAIN S, LINDBLOM S, et al. Alteration of the ileal microbiota of weanling piglets by the growth-promoting antibiotic chlortetracycline[J]. Applied and Environmental Microbiology, 2009, 75:5489-5495. doi: 10.1128/AEM.02220-08
|
[21] |
PARK S J, KIM J, LEE J S, et al. Characterization of the fecal microbiome in different swine groups by high-throughput sequencing[J]. Anaerobe, 2014, 28:157-162. doi: 10.1016/j.anaerobe.2014.06.002
|
[22] |
OELSCHLAEGER T A. Mechanisms of probiotic actions-A review[J]. International Journal of Medical Microbiology, 2010, 300:57-62. doi: 10.1016/j.ijmm.2009.08.005
|
[23] |
STARKE I C, ZENTEK J, VAHJEN W. Effects of the probiotic Enterococcus faecium NCIMB 10415 on selected lactic acid bacteria and enterobacteria in co-culture[J]. Beneficial microbes, 2015, 6:345-352. doi: 10.3920/BM2014.0052
|
[24] |
ANGELAKIS E, RAOULT D. The increase of Lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain[J].PloS one, 2010, 5:e10463-e10463. doi: 10.1371/journal.pone.0010463
|
[25] |
MILLION M, ANGELAKIS E, PAUL M, et al. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals[J]. Microbial Pathogenesis, 2012, 53:100-108. doi: 10.1016/j.micpath.2012.05.007
|
[26] |
ZHANG L, XU Y Q, LIU H Y, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:Effects on diarrhoea incidence, faecal microflora and immune responses[J]. Veterinary Microbiology, 2010, 141:142-148. doi: 10.1016/j.vetmic.2009.09.003
|
[27] |
PRYDE S E, DUNCAN S H, HOLD G L, et al. The microbiology of butyrate formation in the human colon[J]. FEMS Microbiology Letters, 2002, 217:133-139. doi: 10.1111/fml.2002.217.issue-2
|
[28] |
TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444:1027-1031. doi: 10.1038/nature05414
|
[29] |
FALAGAS M E, SIAKAVELLAS E. Bacteroides, Prevotella, and Porphyromonas species:A review of antibiotic resistance and therapeutic options[J]. International Journal of Antimicrobial Agents, 2000, (15):1-9. https://www.ncbi.nlm.nih.gov/pubmed/10856670
|
[30] |
FINEGOLD S M. Overview of clinically important anaerobes[J]. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America, 1995, 20(S2):205-207. http://www.ncbi.nlm.nih.gov/pubmed/7548607
|
[31] |
LIU Y, WANG L H, HAO C B, et al. Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake[J]. Huan jing ke xue, 2014, 35:2305-2313. https://www.ncbi.nlm.nih.gov/pubmed/25158511
|
[32] |
RAWAT S R, MÄNNISTÖ M K, BROMBERG Y, et al. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils[J]. FEMS Microbiology Ecology, 2012, 82:341-355. doi: 10.1111/fem.2012.82.issue-2
|