• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 31 Issue 10
Dec.  2016
Turn off MathJax
Article Contents
CHEN Xi, LI Ying-ying, SONG Tie-ying. Changes Induced by Probiotic, Enterococcus faecium, in Gut Microbiota of Post-weaning Piglet[J]. Fujian Journal of Agricultural Sciences, 2016, 31(10): 1091-1097. doi: 10.19303/j.issn.1008-0384.2016.10.017
Citation: CHEN Xi, LI Ying-ying, SONG Tie-ying. Changes Induced by Probiotic, Enterococcus faecium, in Gut Microbiota of Post-weaning Piglet[J]. Fujian Journal of Agricultural Sciences, 2016, 31(10): 1091-1097. doi: 10.19303/j.issn.1008-0384.2016.10.017

Changes Induced by Probiotic, Enterococcus faecium, in Gut Microbiota of Post-weaning Piglet

doi: 10.19303/j.issn.1008-0384.2016.10.017
  • Received Date: 2016-03-03
  • Rev Recd Date: 2016-05-12
  • Publish Date: 2016-10-01
  • Using the 16S rRNA gene high through-put sequencing technique, the microbial composition of the gut microbiota in post-weaning piglets was characterized. The compositional alterations induced by two strains of Enterococcus faecium were studied. The resulting dominant species in the guts were found to be of Firmicutes and Bacteroidetes phyla with contribution rates of 50.5% and 42.2%, respectively. The richness and diversity of the bacterial community increased after the E. faecium administration. The populations of 6 phyla (i.e., Firmicutes, Proteobacteria, Tenericutes, Actidobacteria, Gemmatimonadetes, and Actinobacteria) were increased, while that of Bacteroidetes significantly declined. A low abundance of Enterococcus spp. was detected in the piglet guts. However, the increase was merely 0.07% over control and 0.12 over the treatment group, SF1, and 0.14% over group SF2 after the feeding. Consequently, the primary effects induced by the probiotics, E. faecium strains, were contributed mainly to the changes on the richness and diversity, or the composition, of the gut microbes. It appeared that the positive results observed on the growth performances of the post-weaning piglets in the field experiment due to the introduction of the probiotics warned further attention.
  • loading
  • [1]
    GASKINS H R. Swine nutrition[M]. 2nd ed. CRC Press, Boca Raton, FL, 2001:121-124.
    [2]
    KELLY D, KING T. Gut environment of pigs[M]. Nottingham University Press, Nottingham, UK, 2001:456-458.
    [3]
    李德发.猪的营养:第2版[M].北京:中国农业科学技术出版社, 2003:112-114.
    [4]
    柳尧波, 凌泽春.猪胃肠道微生物菌群的研究现状浅析[J].山东农业科学, 2011, (10):90-94. http://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201110030.htm
    [5]
    华均超, 张邦辉.微生态制剂对仔猪肠道微生态调控的研究与应用进展[J].中国饲料, 2011, (3):19-22. http://www.cnki.com.cn/Article/CJFDTOTAL-SLGZ201103007.htm
    [6]
    OHASHI Y, USHIDA K.Health-beneficial effects of probioties:Its mode of action[J].Animal Science Journal, 2009, 80:361-371. doi: 10.1111/asj.2009.80.issue-4
    [7]
    GAGGIA F, MATTARELLI P, BIAVAT I B, Probiotics and prebiotics in animal feeding for safe foods production[J]. Int J Food Microbiol, 2010, 141(1):15-28. http://www.academia.edu/9790465/Probiotics_and_prebiotics_in_animal_feeding_for_safe_food_production
    [8]
    CAPORASO J G, LAUBER C L, WALTERS W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences 108(S1), 2011:4516-4522. http://www.pnas.org/content/108/Supplement_1/4516.full.pdf?with-ds=yes
    [9]
    PEIFFER J A, SPOR A, KOREN O, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J].Proc Natl Acad Sci, 2013, 110(16):6548-6553. doi: 10.1073/pnas.1302837110
    [10]
    EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature methods, 2013, 10:996-998. doi: 10.1038/nmeth.2604
    [11]
    WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73:5261-5267. doi: 10.1128/AEM.00062-07
    [12]
    ONDOV B D, BERGMAN N H, PHILLIPPY A M. Interactive metagenomic visualization in a Web browser[J]. BMC Bioinformatics, 2011, 12:385-385. doi: 10.1186/1471-2105-12-385
    [13]
    KIM H B, BOREWICZ K, WHITE B A, et al. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs[J]. Veterinary Microbiology, 2011, 153:24-133. https://www.researchgate.net/profile/Srinand_Sreevatsan/publication/51206370_Longitudinal_investigation_of_the_age-related_bacterial_diversity_in_the_feces_of_commercial_pigs/links/02e7e53638ad9da92d000000.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
    [14]
    YEN J T. Oxygen consumption and energy flux of porcine splanchnictissues[M]. St Malo, France, 1997.
    [15]
    ECKBURG P B, BIK E M, BERNSTEIN C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308:1635-1638. doi: 10.1126/science.1110591
    [16]
    LAMENDELLA R, DOMINGO J W S, GHOSH S, et al. Comparative fecal metagenomics unveils unique functional capacity of the swine gut[J]. BMC microbiology, 2011, (11):103. https://www.ncbi.nlm.nih.gov/pubmed/21575148
    [17]
    LESER T D, AMENUVOR J Z, JENSEN T K, et al. Culture-independent analysis of gut bacteria:The pig gastrointestinal tract microbiota revisited[J]. Applied and Environmental Microbiology, 2002, 68:673-690. doi: 10.1128/AEM.68.2.673-690.2002
    [18]
    QU A, BRULC J M, WILSON M K, et al. Comparative Metagenomics Reveals Host Specific Metavirulomes and Horizontal Gene Transfer Elements in the Chicken Cecum Microbiome[J]. PloS one, 2008, 3:19-19. http://www.citeulike.org/group/6072/article/4275880
    [19]
    COLLIER C T, SMIRICKY-TJARDES M R, ALBIN D M, et al. Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters[J]. Journal of Animal Science, 2003, 81:3035-3045. doi: 10.2527/2003.81123035x
    [20]
    RETTEDAL E, VILAIN S, LINDBLOM S, et al. Alteration of the ileal microbiota of weanling piglets by the growth-promoting antibiotic chlortetracycline[J]. Applied and Environmental Microbiology, 2009, 75:5489-5495. doi: 10.1128/AEM.02220-08
    [21]
    PARK S J, KIM J, LEE J S, et al. Characterization of the fecal microbiome in different swine groups by high-throughput sequencing[J]. Anaerobe, 2014, 28:157-162. doi: 10.1016/j.anaerobe.2014.06.002
    [22]
    OELSCHLAEGER T A. Mechanisms of probiotic actions-A review[J]. International Journal of Medical Microbiology, 2010, 300:57-62. doi: 10.1016/j.ijmm.2009.08.005
    [23]
    STARKE I C, ZENTEK J, VAHJEN W. Effects of the probiotic Enterococcus faecium NCIMB 10415 on selected lactic acid bacteria and enterobacteria in co-culture[J]. Beneficial microbes, 2015, 6:345-352. doi: 10.3920/BM2014.0052
    [24]
    ANGELAKIS E, RAOULT D. The increase of Lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain[J].PloS one, 2010, 5:e10463-e10463. doi: 10.1371/journal.pone.0010463
    [25]
    MILLION M, ANGELAKIS E, PAUL M, et al. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals[J]. Microbial Pathogenesis, 2012, 53:100-108. doi: 10.1016/j.micpath.2012.05.007
    [26]
    ZHANG L, XU Y Q, LIU H Y, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:Effects on diarrhoea incidence, faecal microflora and immune responses[J]. Veterinary Microbiology, 2010, 141:142-148. doi: 10.1016/j.vetmic.2009.09.003
    [27]
    PRYDE S E, DUNCAN S H, HOLD G L, et al. The microbiology of butyrate formation in the human colon[J]. FEMS Microbiology Letters, 2002, 217:133-139. doi: 10.1111/fml.2002.217.issue-2
    [28]
    TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444:1027-1031. doi: 10.1038/nature05414
    [29]
    FALAGAS M E, SIAKAVELLAS E. Bacteroides, Prevotella, and Porphyromonas species:A review of antibiotic resistance and therapeutic options[J]. International Journal of Antimicrobial Agents, 2000, (15):1-9. https://www.ncbi.nlm.nih.gov/pubmed/10856670
    [30]
    FINEGOLD S M. Overview of clinically important anaerobes[J]. Clinical infectious diseases:an official publication of the Infectious Diseases Society of America, 1995, 20(S2):205-207. http://www.ncbi.nlm.nih.gov/pubmed/7548607
    [31]
    LIU Y, WANG L H, HAO C B, et al. Microbial diversity and ammonia-oxidizing microorganism of a soil sample near an acid mine drainage lake[J]. Huan jing ke xue, 2014, 35:2305-2313. https://www.ncbi.nlm.nih.gov/pubmed/25158511
    [32]
    RAWAT S R, MÄNNISTÖ M K, BROMBERG Y, et al. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils[J]. FEMS Microbiology Ecology, 2012, 82:341-355. doi: 10.1111/fem.2012.82.issue-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(8)

    Article Metrics

    Article views (1989) PDF downloads(201) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return