• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缓释肥对木薯根际土壤真菌和C、N、P、S功能基因动态的影响

赵鑫鑫 韦云东 陈蕊蕊 周时艺 郑华 马崇熙 徐钏 李军 卢赛清

赵鑫鑫,韦云东,陈蕊蕊,等. 缓释肥对木薯根际土壤真菌和C、N、P、S功能基因动态的影响 [J]. 福建农业学报,2024,39(8):914−926 doi: 10.19303/j.issn.1008-0384.2024.08.005
引用本文: 赵鑫鑫,韦云东,陈蕊蕊,等. 缓释肥对木薯根际土壤真菌和C、N、P、S功能基因动态的影响 [J]. 福建农业学报,2024,39(8):914−926 doi: 10.19303/j.issn.1008-0384.2024.08.005
ZHAO X X, WEI Y D, CHEN R R, et al. Fungal Community and C, N, P, and S Functional Genes in Rhizosphere Soil of Cassava Field Treated with a Slow-release Fertilizer [J]. Fujian Journal of Agricultural Sciences,2024,39(8):914−926 doi: 10.19303/j.issn.1008-0384.2024.08.005
Citation: ZHAO X X, WEI Y D, CHEN R R, et al. Fungal Community and C, N, P, and S Functional Genes in Rhizosphere Soil of Cassava Field Treated with a Slow-release Fertilizer [J]. Fujian Journal of Agricultural Sciences,2024,39(8):914−926 doi: 10.19303/j.issn.1008-0384.2024.08.005

缓释肥对木薯根际土壤真菌和C、N、P、S功能基因动态的影响

doi: 10.19303/j.issn.1008-0384.2024.08.005
基金项目: 国家木薯产业技术体系建设专项(CARS-11);广西农业科学院基本科研业务专项(桂农科2021YT150);广西自然科学基金项目(2021GXNSFBA196007)
详细信息
    作者简介:

    赵鑫鑫(1997 —),女,硕士,主要从事木薯育种与栽培研究,E-mail:1026935971@qq.com

    通讯作者:

    卢赛清(1981 —),女,硕士,正高级农艺师,主要从事木薯育种与栽培研究,E-mail:phqbd@163.com

  • 中图分类号: S154.3;S533

Fungal Community and C, N, P, and S Functional Genes in Rhizosphere Soil of Cassava Field Treated with a Slow-release Fertilizer

  • 摘要:   目的  研究木薯缓释肥对根际土壤真菌和C、N、P、S功能基因动态的影响。  方法  开展木薯田间试验,设置3个处理:不施肥(T1)、双膜缓释肥C2基施(T2)和植后34 d追施(T3)。在植后77、104、134 d采集根际和非根际土样,测定高通量(Illumina Miseq PE300)真菌(ITS rRNA)多样性,C、N、P、S共72个(含总DNA)功能基因的copies(基因芯片技术)和土壤速效养分(仅用于相关分析)。  结果  (1)植后104 d根际土壤被孢霉纲、银耳纲、圆盘菌纲相对丰度均为T2<T1;植后134 d,根际土壤散囊菌纲为T2>T1。T2散囊菌纲(134 d)、T3丛赤壳科(77 d)和T3粪壳菌纲(104 d)在根际相对富集。T1根际被孢霉纲相对丰度的时间大小顺序为134 d<104 d;T2根际散囊菌纲和粪壳菌纲均为134 d>77 d;T3根际的球囊菌纲为104 d>77 d。(2)Sobs、ACE、Chao1指数在T1(104 d)、T2(104 d)和T3(134 d)根际分别显著或极显著大于非根际。根际土壤Shannon指数在植后77 d为T1<T2和T3,T1和T2的时间大小顺序分别为104 d>77 d和104 d<77 d。土壤Simpson指数的大小顺序为T1根际(77 d)大于T1非根际(77 d)、T1根际(104 d)、T2根际(77 d)和T3根际(77 d)。(3)LEfSe分析结果表明,处理间根际相对富集1个纲、1个目和2个科。对比非根际,植后77 d根际相对富集2个种,植后104 d相对富集3个目、1个科、1个属,植后134 d相对富集各1个门、目、科和属。时间比较中,104 d和134 d根际分别相对富集2个目和1个纲。(4)134 d,lig等9个功能基因在T1非根际土壤中的丰度显著高于根际土壤。在T1根际土壤中,chiAaclB的丰度均为77 d高于104 d和134 d。(5)AK在104 d与31个功能基因显著相关。银耳纲、肉座菌目、丛赤壳科和球囊菌纲分别和其他40个、15个、14个、9个功能基因显著相关。  结论  缓释肥基施和追施可提高木薯根际真菌群落的多样性和丰度,施肥、时间、根际等均对真菌群落结构和少数功能基因有显著的影响,相关性分析结果暗示木薯根际真菌可能参与土壤速效养分的循环和功能基因的作用,为进一步了解木薯根际微生态过程提供科学依据。
  • 图  1  真菌纲和部分主要目和科的heatmap图

    (1)第一个/之前的字母表示处理间的差异,两个/之间的字母表示根际与非根际之间的差异,第二个/后的字母表示采样时间之间的差异;(2)处理间/根际与非根际/时间比较,其中一个因素的比较均排除另外两个因素的差异进行。如处理间比较仅限同一采样时间和同一土壤类型(根际或非根际)的不同处理比较。不同的小写字母表示差异显著(P<0.05),不同的大写字母表示极显著(P<0.01)。(2)处理编号中,R表示根际土壤,N表示非根际土壤。

    Figure  1.  Heatmap of fungal classes and dominant orders and families

    (1) Letters before first “/” indicate significant difference between treatments; those between two “/” indicate difference between rhizosphere and bulk soil; and those after second “/” indicate difference between sampling times. (2) Mutually exclusive comparisons between intertreatment/rhizosphere and bulk soil/time, e.g., a comparison between treatments is limited to treatments on either rhizosphere or bulk soil at same sampling time. Data with different lowercase letters indicate significant differences at P<0.05; those with different uppercase letters, extremely significant differences at P<0.01. (2) In the treatmet name, R: rhizosphere soil; N: bulk soil.

    图  2  功能基因丰度(对数转化)

    第一个/之前的数字是表示非零值的样品个数,第一个/之前的字母表示处理间是否有显著差异,两个/之间的字母表示根际与非根际之间的差异,第二个/后的字母表示采样时间之间的差异。不同小写字母表示差异显著(P<0.05)。

    Figure  2.  Logarithmic transformed abundance of functional genes

    Number before first "/" indicates count of non-zero values, while letter, significant difference between treatments; letter between two "/" indicates difference between rhizosphere and bulk soil; and letter after second "/"indicates difference between sampling times. Data with different lowercase letters indicate significant differences at P<0.05.

    图  3  功能基因之间及其与速效养分的相关性(仅列出有显著相关)

    Figure  3.  Correlation between functional genes and available nutrients (only significant correlations are listed)

    图  4  真菌纲和部分主要目和科和功能基因的相关性

    Figure  4.  Correlation between functional genes and some major orders and families of fungi

    表  1  真菌属水平α-多样性

    Table  1.   α-diversity of fungi at family level

    土壤类型和时间
    Soil types and time
    处理
    Treatment
    Sobs Shannon Simpson ACE Chao1
    T1211.8±65.4a/a/a3.241±0.083b/a/b0.083±0.007a/a/A222.6±72.9a/a/a223.5±73.3a/a/a
    R77dT2227.5±28.8a/a/a3.562±0.205a/a/a0.059±0.016b/a/a232.4±31.4a/a/a234.6±33.7a/a/a
    T3239.3±29.8a/a/a3.584±0.115a/a/a0.057±0.009b/a/a245.1±32.5a/a/a249.0±34.3a/a/a
    T1197.5±28.5a/a/a3.528±0.188a/a/a0.057±0.012a/b/a203.5±33.9a/a/a207.7±39.8a/a/a
    N77dT2188.5±26.8a/a/a3.559±0.131a/a/a0.055±0.009a/a/a191.8±27.9a/a/a193.4±29.7a/a/a
    T3206.3±18.1a/a/a3.491±0.079a/a/a0.066±0.016a/a/a209.8±20.4a/a/a211.3±19.5a/a/a
    T1249.8±29.1a/a/a3.604±0.213a/a/a0.051±0.008a/a/B257.9±32.3a/a/a259.4±32.7a/a/a
    R104dT2232.5±21.4a/A/a3.412±0.217a/a/b0.068±0.018a/a/a241.1±23.3a/A/a242.8±23.1a/A/a
    T3254.5±39.7a/a/a3.439±0.264a/a/a0.084±0.058a/a/a265.0±43.4a/a/a265.7±44.1a/a/a
    T1204.5±27.1a/b/a3.516±0.102a/a/a0.060±0.005a/a/a207.5±28.3a/b/a208.1±28.4a/b/a
    N104dT2189.5±33.7a/B/a3.141±0.619a/a/a0.121±0.117a/a/a195.3±35.9a/B/a195.1±36.5a/B/a
    T3192.8±28.2a/a/a3.343±0.265a/a/a0.073±0.020a/a/a195.6±29.1a/a/a196.6±29.9a/a/a
    T1223.8±25.6a/a/a3.258±0.464a/a/ab0.110±0.067a/a/AB236.6±32.7a/a/a237.1±32.6a/a/a
    R134dT2219.0±34.9a/a/a3.392±0.353a/a/ab0.069±0.027a/a/a231.2±41.4a/a/a237.5±46.8a/a/a
    T3249.5±19.8a/a/a3.491±0.167a/a/a0.062±0.016a/a/a264.7±25.8a/a/a272.0±28.1a/a/a
    T1204.8±28.1a/a/a2.811±0.883a/a/a0.193±0.227a/a/a218.6±24.4a/a/a220.0±21.4a/a/a
    N134dT2180.8±32.3a/a/a3.391±0.178a/a/a0.065±0.014a/a/a184.0±33.8a/a/a184.9±34.1a/a/a
    T3202.8±26.4a/b/a3.441±0.303a/a/a0.065±0.031a/a/a206.8±28.4a/b/a208.5±29.2a/b/a
    ①R表示根际土壤,N表示非根际土壤。R77d和N77d分别表示植后77 d的根际土壤和植后77 d的非根际土壤。②“//”及其前后的字母含义与图1相同。
    ①R: rhizosphere soil; N: bulk soil. R77d and N77d: rhizosphere soil and bulk soil on 77 DAP, respectively. ② Letters mean as Fig. 1.
    下载: 导出CSV

    表  2  土壤真菌LEfSe分析信息

    Table  2.   LEfSe analysis information of soil fungi

    处理对及优势处理
    The treatments for comparison
    and the advantageous one
    生物标记物
    Biomarker
    处理对及优势处理
    The treatments for comparison
    and the advantageous one
    生物标记物
    Biomarker
    77 d
    T1R-T2R-T3R
    f_Sordariales_fam_Incertae_sedis, g_Ramophialophora, s_Ramophialophora_sp. 104 d
    T2-T2R
    g_Cephalotrichum, s_unclassified_g_Cephalotrichum
    104 d
    T1R-T2R-T3R
    f_Bionectriaceae, g_Clonostachys, s_Clonostachys_sp.; o_Chaetosphaeriales, f_Chaetosphaeriaceae, g_Codinaea, s_unclassfied_g_Codinaea 134 d
    T2-T2R
    Ascomycota, c_Eurotiomycetes; o_Microascales, f_Microascaceae, g_Cephalotrichum, s_unclassified_g_cephalotrichum
    134 d
    T1R-T2R-T3R
    c_Eurotiomycetes, o_Microascales, f_Microascaceae 134 d
    T3-T3R
    g_Fusarium, s_unclassified_g_Fusarium; f_Bionectraceae g_Clonostachys, s_Clonostachys_sp.
    77 d
    T1-T1R
    s_Clonostachys_sp. 104 d
    T3-T3R
    f_Stachybotryaceae
    77 d
    T2R-T2
    s_Chaetomium_sp. T1R
    77d-104d-134d
    o_Branch06, f_unclassified_o_Branch06, g_unclassified_o_branch06, s_Branch06_sp.; o_Capnodiales, f_Mycosphaerellaceae
    104 d
    T1-T1R
    o_Branch06, f_unclassified_o_Branch06, g_unclassified_o_branch06, s_Branch06_sp.; o_Capnodiales; o_Chaetosphaeriales, f_Chaetosphaeriaceae, g_Codinaea, s_unclassified_g_Codinaea T2R
    77d-104d-134d
    c_Eurotiomycetes
    ①T1R-T2R-T3R单元格内的上下两行分别表示共同和异同的处理,如77d T1R-T2R-T3R表示77d的T1、T2、T3根际比较,且粗体加下划线格式表示右侧列出的真菌门类为该处理的Biomarker。R表示根际土。②真菌门类名称前的c_表示纲(class),o_表示目(order),f_表示科(family),g_表示属(genus),s_表示种(species),不标记表示门水平;“,”表示后者包含于前者的门类,“;”表示后者与前者不属于同一门类。
    (1) Upper and lower rows in cells of same type represent common and different treatments, respectively. For example, 77d T1R-T2R-T3R is comparison of rhizosphere soils under T1, T2, and T3 on 77 DAP. Name with underlined bold fonts indicates fungal phyla listed on the right to be biomarker of treatment, and R, rhizosphere soil. (2) Before a fungus name, c_ represents at class level, o_, order, f_, family, g_, genus, s_, species, and unmarked, phylum. "," indicates two in same phylum; and ";" two are in different phyla.
    下载: 导出CSV
  • [1] FENG S, FU D D, HAN X R, et al. Impacts of the extension of cassava soil conservation and efficient technology on the reduction of chemical fertilizer input in China [J]. Sustainability, 2022, 14(22): 15052. doi: 10.3390/su142215052
    [2] 韦云东, 周时艺, 陈蕊蕊, 等. 木薯缓释肥和地膜/地布覆盖对木薯生长的影响 [J]. 中国农学通报, 2023, 39(22):16−22. doi: 10.11924/j.issn.1000-6850.casb2022-0681

    WEI Y D, ZHOU S Y, CHEN R R, et al. Effects of slow-release fertilizer application and film mulching on growth of cassava [J]. Chinese Agricultural Science Bulletin, 2023, 39(22): 16−22. (in Chinese) doi: 10.11924/j.issn.1000-6850.casb2022-0681
    [3] 柳玲玲, 顾小凤, 魏全全, 等. 生物有机肥配施缓释肥对连作马铃薯提质增产效果研究 [J]. 安徽农业科学, 2023, 51(17):129−131. doi: 10.3969/j.issn.0517-6611.2023.17.028

    LIU L L, GU X F, WEI Q Q, et al. Study on the effect of biological organic fertilizer with slow release fertilizer on the quality improvement of continuous potato [J]. Journal of Anhui Agricultural Sciences, 2023, 51(17): 129−131. (in Chinese) doi: 10.3969/j.issn.0517-6611.2023.17.028
    [4] REN T T, YU X Y, LIAO J H, et al. Application of biogas slurry rather than biochar increases soil microbial functional gene signal intensity and diversity in a poplar plantation [J]. Soil Biology and Biochemistry, 2020, 146: 107825. doi: 10.1016/j.soilbio.2020.107825
    [5] LI S, LIANG H, WANG Y, et al. Responses of functional genes involved in nitrogen cycling to green manuring in different paddy soils in South China [J]. Plant and Soil, 2022, 478(1): 519−532.
    [6] 周时艺, 韦云东, 陈蕊蕊, 等. 不同缓释肥对木薯生长和土壤速效养分的影响 [J]. 江西农业学报, 2022, 34(4):100−104.

    ZHOU S Y, WEI Y D, CHEN R R, et al. Effects of different slow-release fertilizers on cassava growth and soil available nutrients [J]. Acta Agriculturae Jiangxi, 2022, 34(4): 100−104. (in Chinese)
    [7] 周时艺, 韦云东, 陈蕊蕊, 等. 缓释肥不同施用深度对木薯生长的影响 [J]. 湖南农业大学学报(自然科学版), 2023, 49(2):140−144.

    ZHOU S Y, WEI Y D, CHEN R R, et al. Effects of fertilization depth of slow-release fertilizer on cassava growth [J]. Journal of Hunan Agricultural University (Natural Sciences), 2023, 49(2): 140−144. (in Chinese)
    [8] 覃锋燕, 杨慰贤, 彭晓辉, 等. 粉垄耕作木薯根际与非根际土壤的细菌群落结构多样性差异 [J]. 西南农业学报, 2022, 35(4):729−739.

    QIN F Y, YANG W X, PENG X H, et al. Difference in the diversity of bacterial community structure in rhizosphere and non-rhizosphere soil of cassava in Fenlong tillage [J]. Southwest China Journal of Agricultural Sciences, 2022, 35(4): 729−739. (in Chinese)
    [9] 蔡杰, 张洁, 喻珊, 等. 施肥方式对木薯根际土壤细菌多样性与群落结构特征的影响 [J]. 福建农林大学学报(自然科学版), 2022, 51(1):15−20.

    CAI J, ZHANG J, YU S, et al. Effect of fertilization on bacterial diversity and community structure characteristics in cassava rhizospheric soil [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2022, 51(1): 15−20. (in Chinese)
    [10] 韦云东, 罗燕春, 郑华, 等. 根袋法获取木薯根际土壤及其细菌群落特征研究 [J]. 热带作物学报, 2020, 41(9):1928−1938. doi: 10.3969/j.issn.1000-2561.2020.09.029

    WEI Y D, LUO Y C, ZHENG H, et al. Cassava rhizosphere soil collected by “root bag” method and its bacteria diversity [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1928−1938. (in Chinese) doi: 10.3969/j.issn.1000-2561.2020.09.029
    [11] LI L W, SHEN Z Y, QIN F Y, et al. Effects of tillage and N applications on the cassava rhizosphere fungal communities [J]. Agronomy, 2023, 13(1): 237. doi: 10.3390/agronomy13010237
    [12] CAI J, ZHANG J, DING Y, et al. Different fertilizers applied alter fungal community structure in rhizospheric soil of cassava (Manihot esculenta crantz) and increase crop yield [J]. Frontiers in Microbiology, 2021, 12: 663781. doi: 10.3389/fmicb.2021.663781
    [13] 韦云东, 罗燕春, 郑华, 等. 基于高通量测序的木薯根域土壤微生物群落结构研究 [J]. 农业研究与应用, 2021, 34(1):1−14. doi: 10.3969/j.issn.2095-0764.2021.01.001

    WEI Y D, LUO Y C, ZHENG H, et al. Study on soil microbial community structure in cassava rhizosphere by high-throughput sequencing techniques [J]. Agricultural Research and Application, 2021, 34(1): 1−14. (in Chinese) doi: 10.3969/j.issn.2095-0764.2021.01.001
    [14] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.

    BAO S D. Soil agrochemical analysis (third edition) [M].Beijing: China Agriculture Press, 2000. (in Chinese)
    [15] YANG W, ZHANG D, CAI X W, et al. Significant alterations in soil fungal communities along a chronosequence of Spartina alterniflora invasion in a Chinese Yellow Sea coastal wetland [J]. Science of the Total Environment, 2019, 693: 133548. doi: 10.1016/j.scitotenv.2019.07.354
    [16] 张洁洁, Anders Priemé, 陈显轲, 等. 基于QMEC分析的青藏高原不同类型冰川前缘地土壤微生物功能潜力 [J]. 环境科学, 2023, 44(1):512−519.

    ZHANG J J, PRIEMÉ A, CHEN X K, et al. QMEC-based analysis of the soil microbial functional potentials across different Tibetan Plateau glacier forelands [J]. Environmental Science, 2023, 44(1): 512−519. (in Chinese)
    [17] ZHENG B X, ZHU Y G, SARDANS J, et al. QMEC: A tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling [J]. Science China Life Sciences, 2018, 61(12): 1451−1462. doi: 10.1007/s11427-018-9364-7
    [18] LI H Z, BI Q F, YANG K, et al. High starter phosphorus fertilization facilitates soil phosphorus turnover by promoting microbial functional interaction in an arable soil [J]. Journal of Environmental Sciences, 2020, 94: 179−185. doi: 10.1016/j.jes.2020.03.040
    [19] ZHANG Y X, LI X, XIAO M, et al. Effects of microplastics on soil carbon dioxide emissions and the microbial functional genes involved in organic carbon decomposition in agricultural soil[J]. Science of the Total Environment, 2022, 806(Pt 3): 150714.
    [20] 白小龙, 张恩, 武晋民, 等. 不同改良物料对盐碱土壤真菌群落结构的影响 [J]. 环境科学, 2024, 45(6):3562−3570.

    BAI X L, ZHANG E, WU J M, et al. Effects of different modified materials on soil fungal community structure in SalineAlkali soil [J]. Environmental Science, 2024, 45(6): 3562−3570. (in Chinese)
    [21] AL-SADI A M, AL-MAZROUI S S, PHILLIPS A J L. Evaluation of culture-based techniques and 454 pyrosequencing for the analysis of fungal diversity in potting media and organic fertilizers [J]. Journal of Applied Microbiology, 2015, 119(2): 500−509. doi: 10.1111/jam.12854
    [22] CHALLACOMBE J F, HESSE C N, BRAMER L M, et al. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis [J]. BMC Genomics, 2019, 20(1): 976. doi: 10.1186/s12864-019-6358-x
    [23] 刘子凡, 刘培培, 闫文静, 等. 间作木薯对橡胶树根际土壤真菌群落结构的影响 [J]. 热带作物学报, 2020, 41(3):609−614. doi: 10.3969/j.issn.1000-2561.2020.03.026

    LIU Z F, LIU P P, YAN W J, et al. Effects of rubber-cassava intercropping on soil fungal community structure in rhizosphere of rubber trees [J]. Chinese Journal of Tropical Crops, 2020, 41(3): 609−614. (in Chinese) doi: 10.3969/j.issn.1000-2561.2020.03.026
    [24] 姚丽娟, 田春丽, 王立河, 等. 设施西瓜连作土壤生化性质及微生物群落变化 [J]. 中国土壤与肥料, 2024, (3):70−78. doi: 10.11838/sfsc.1673-6257.23205

    YAO L J, TIAN C L, WANG L H, et al. Changes of soil biochemical properties and microbial community in continuous cropping of watermelon under greenhouse cultivation [J]. Soil and Fertilizer Sciences in China, 2024(3): 70−78. (in Chinese) doi: 10.11838/sfsc.1673-6257.23205
    [25] 常芳娟, 张贵云, 张丽萍, 等. 生物炭对西瓜连作土壤真菌群落结构和功能类群的影响 [J]. 环境科学, 2024, 45(6):3553−3561.

    CHANG F J, ZHANG G Y, ZHANG L P, et al. Effects of biochar application on the structure and function of fungal community in continuous cropping watermelon soil [J]. Environmental Science, 2024, 45(6): 3553−3561. (in Chinese)
    [26] GOULD A B. Fungi: plant pathogenic[M]//Encyclopedia of Microbiology. Amsterdam: Elsevier, 2009: 457-477.
    [27] PLASSARD C, LOUCHE J, ALI M A, et al. Diversity in phosphorus mobilisation and uptake in ectomycorrhizal fungi [J]. Annals of Forest Science, 2011, 68(1): 33−43. doi: 10.1007/s13595-010-0005-7
    [28] LIANG J L, LIU J, JIA P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining [J]. The ISME Journal, 2020, 14(6): 1600−1613. doi: 10.1038/s41396-020-0632-4
    [29] ZHOU J, GUAN D W, ZHOU B K, et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in Northeast China [J]. Soil Biology and Biochemistry, 2015, 90: 42−51. doi: 10.1016/j.soilbio.2015.07.005
    [30] 陈晨, 许欣, 毕智超, 等. 生物炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响 [J]. 环境科学学报, 2017, 37(5):1912−1920.

    CHEN C, XU X, BI Z C, et al. Effects of biochar and organic manure on N2O emissions and the functional gene abundance of nitrification and denitrification microbes under intensive vegetable production [J]. Acta Scientiae Circumstantiae, 2017, 37(5): 1912−1920. (in Chinese)
    [31] WAKELIN S A , COLLOFF M J , HARVEY P R , et al. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize[J]. Fems Microbiology Ecology, 2010(3): 661-670. DOI: 10.1111/j.1574-6941.2006.00235.x.
    [32] 钱佳彤. 不同轮作与施肥方式下土壤固碳特征及碳氮转化研究[D]. 重庆: 西南大学, 2021.

    QIAN J T. Study on soil carbon fixation characteristics and carbon and nitrogen transformation under different rotation and fertilization [D]. Chongqing: Southwest University, 2021. (in Chinese)
    [33] 裴理鑫. 黄渤海滨海湿地土壤微生物群落结构对碳循环的影响及其对增温响应[D]. 武汉: 中国地质大学, 2021.

    PEI L X. Effects of soil microbial community on carbon cycle and its response to warming in coastal wetlands of the Yellow-Bohai Sea [D]. Wuhan: China University of Geosciences, 2021. (in Chinese)
    [34] BASTIDA F, TORRES I F, MORENO J L, et al. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils [J]. Molecular Ecology, 2016, 25(18): 4660−4673. doi: 10.1111/mec.13783
    [35] YELLE D J, RALPH J, LU F C, et al. Evidence for cleavage of lignin by a brown rot basidiomycete [J]. Environmental Microbiology, 2008, 10(7): 1844−1849. doi: 10.1111/j.1462-2920.2008.01605.x
    [36] LI Y C, LI Y F, CHANG S X, et al. Bamboo invasion of broadleaf forests altered soil fungal community closely linked to changes in soil organic C chemical composition and mineral N production [J]. Plant and Soil, 2017, 418(1): 507−521.
    [37] YANG W H, LI C J, WANG S S, et al. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil [J]. Applied Soil Ecology, 2021, 166: 104005. doi: 10.1016/j.apsoil.2021.104005
    [38] 李航, 苏梦迪, 黄浪平, 等. 氮磷钾配施对植烟土壤速效养分和真菌多样性的影响 [J]. 作物杂志, 2023, (3):238−245.

    LI H, SU M D, HUANG L P, et al. Effects of nitrogen, phosphorus and potassium application on available nutrients and fungal diversity in tobacco-growing soil [J]. Crops, 2023(3): 238−245. (in Chinese)
    [39] 李鹏, 颜培栋, 杨章旗, 等. 施肥对马尾松中龄林生长、产脂量和土壤养分的短期影响 [J]. 广西科学, 2023, 30(2):239−250.

    LI P, YAN P D, YANG Z Q, et al. Short-term effects of fertilization on the growth, resin yield and soil nutrient characteristics of middle-aged Pinus massoniana plantation [J]. Guangxi Sciences, 2023, 30(2): 239−250. (in Chinese)
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  22
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 录用日期:  2024-08-13
  • 修回日期:  2024-08-06
  • 网络出版日期:  2024-11-13
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回