Effects of Pulsed Electric Field on Photosynthetic Electron Transport and Negative Air Ion Releasing of Agave americana
-
摘要:
目的 探明脉冲电场刺激对金边龙舌兰( Agave americana var. Marginata)光合电子传递链和释放负离子能力的影响。 方法 采用0 kV(对照,CK)、5 kV(T1)和7 kV(T2)3个不同脉冲电场处理刺激金边龙舌兰,比较和分析不同刺激下金边龙舌兰的叶绿素含量、快速叶绿素荧光诱导动力曲线(Rapid Chlorophyll Fluorescence Induction Kinetics Curve, OJIP曲线)、叶绿素荧光参数和负离子释放浓度的变化情况。 结果 (1)脉冲电场技术刺激金边龙舌兰后,两处理组叶绿素含量分别增长6.30%、6.70%,两处理组与CK组之间存在显著差异;(2)两处理组OJIP曲线,偏转(I)和最高峰(P)值均高于原点(O)和拐点(J)值,I-P段的上升趋势较O-J段平缓。同时,J-band均大于0,T2处理组峰值高于T1处理组;(3)叶绿素荧光参数均呈波动的变化趋势,其中最大荧光强度(Fm)、单位面积捕获能量(TRo/CSo)等整体呈现上升的趋势,PSⅡ光合系统潜在活性(Fv/Fo)、PSⅡ受体侧电子传递体数(Sm)等整体呈现下降的趋势,最大光量子效率(Fv /Fm)、J点相对可变荧光强度(Vj)等整体变化不大。吸收光能为基础的性能指数(PIabs)均出现减小的趋势,其中T1处理组减小18.60%,T2处理组减小14.1%。CK处理组综合性能参数(PItotal)大于T1处理组和T2处理组;(4)T1处理组,脉冲电场刺激4 h相较于脉冲刺激3 h时,NAI浓度增长87.60%。T2处理组,脉冲电场刺激4 h后,相较于脉冲刺激3 h时,NAI浓度增长62.09%,其中在脉冲1~4 h,两处理组之间、二者与CK组之间NAI释放浓度存在显著差异。 结论 脉冲电场技术对金边龙舌兰光合电子传递链产生影响,进而对其释放负离子能力等产生影响。 Abstract:Objective To investigate the effects of pulsed electric field on the photosynthetic electron transport and ability to release negative air ions (NAIs) of Agave americana were investigated. Method Chlorophyll content, rapid chlorophyll fluorescence kinetic functions (OJIP curve), chlorophyll fluorescence parameters, and NAI concentration of A. americana var. Marginata exposed to a pulsed electric field at 0 kV (CK), 5 kV (T1), or 7 kV (T2) were determined. Result (1) T1 and T2 significantly increased the chlorophyll content over CK by 6.30% and 6.70%, respectively. (2) The OJIP curves had higher deflection (I) and peak (P) than the origin (O) and inflection point (J), a flatter upward trend on I-P than on O-J, and a greater than 0 J-band with the peak of T2 higher than that of T1. (3) T1 and T2 also caused the chlorophyll fluorescence parameters to generally rise on the peak fluorescence intensity (Fm) and energy captured by unit reaction center (TRo/CSo), fall on the PSⅡ light, system potential activity (Fv/Fo), and number of electron transmitters on PSⅡ acceptor side (Sm), and maintain a stable maximum light quantum efficiency (Fv/Fm) as well as fluorescence at J-step (Vj). The performance index based on light energy absorption (PIabs) decreased with an 18.60% reduction by T1 and 14.1% by T2. The comprehensive performance parameter (PItotal) under CK was greater than that under T1 or T2. (4) After a 4h treatment, the NAI concentration increased 87.60% under T1 and 62.09% under T2 from an hour previously. And, during that time, the concentrations differed significantly between T1 and T2, as well as in comparison with CK. Conclusion Exposure to a pulsed electric field significantly affected the photosynthetic electron transport and NAIs releasing of A. americana. The findings disclosed a means to identify potentially applicable germplasms and a physical treatment to enrich the unique biological function of the plant. -
表 1 经脉冲电场刺激处理后金边龙舌兰叶片叶绿素含量变化
Table 1. Changes on chlorophyll content in leaves of A. americana treated by pulsed electric field
处理
Treatment叶片SPAD值($ \overline{X}\pm\mathit{\mathit{\mathrm{\mathit{S D}}}} $)
SPAD value($ \overline{X}\pm\mathrm{\mathit{S D}} $)0 h 1 h 2 h 3 h 4 h 0 kV(CK) 71.92±0.79a 71.12±1.69b 70.05±1.58b 70.39±1.16b 72.94±0.81b 5 kV(T1) 72.54±0.86a 75.72±0.74a 74.46±2.65a 76.50±0.85a 77.11±0.69a 7 kV(T2) 72.44±0.98a 75.73±0.63a 75.22±2.30a 75.51±0.71a 77.28±1.81a 同列数据后不同小写字母表示同一时间不同处理组间差异显著(P<0.05),表2、3同。
Different lowercase letters in the same column indicate the significant (P<0.05) difference among treatments.Same for Table 2 and 3.表 2 脉冲电场刺激后金边龙舌兰叶绿素荧光参数的动态变化
Table 2. Dynamic changes on chlorophyll fluorescence parameters in leaves of A. americana treated by pulsed electric field (
$\overline X \pm {{S D}}$ )项目
Item处理
Treatment叶绿素荧光参数值 ($ \overline X \pm {{S D}}$)
Chlorophyll fluorescence parameter values ($\overline X \pm {{S D}}$)0 h 1 h 2 h 3 h 4 h 0 kV(CK) 5.25±0.14b 5.17±0.68a 5.41±0.23a 5.22±0.27a 5.39±0.15ab F v/Fo 5 kV(T1) 5.53±0.09a 5.36±0.26a 5.26±0.27a 5.14±0.28a 5.10±0.23b 7 kV(T2) 5.42±0.30ab 5.42±0.29a 5.40±0.24a 5.41±0.19a 5.30±0.24a 0 kV(CK) 27.38±5.78a 27.44±4.37a 28.78±4.82a 28.56±5.26a 28.46±4.91a Sm 5 kV(T1) 29.07±5.24a 29.73±4.78a 29.73±0.01a 28.32±4.29a 27.72±4.17a 7 kV(T2) 27.47±3.09a 28.00±3.25a 27.12±3.49a 27.96±4.90a 26.77±3.73a 0 kV(CK) 0.52±0.02a 0.53±0.01a 0.52±0.02a 0.50±0.02b 0.51±0.02a φEo 5 kV(T1) 0.52±0.01a 0.51±0.01a 0.51±0.01a 0.52±0.00a 0.50±0.01a 7 kV(T2) 0.53±0.02a 0.52±0.02a 0.52±0.02a 0.52±0.02a 0.51±0.02a 0 kV(CK) 9.05±1.51a 8.89±2.15a 9.24±1.65a 9.16±1.65a 9.47±1.50a PIabs 5 kV(T1) 9.77±0.30a 9.22±0.64a 8.81±0.41a 8.42±0.28a 8.24±0.53a 7 kV(T2) 10.75±1.4a 10.25±11a 10.09±1.27a 9.83±1.98a 9.42±1.51a 0 kV(CK) 3.20±0.70a 2.94±0.97b 3.12±0.71a 2.95±0.68b 3.22±0.57a PItotal 5 kV(T1) 3.25±1.31a 3.23±0.65a 3.13±0.58a 3.00±0.58a 2.87±1.81a 7 kV(T2) 3.29±0.81a 3.19±0.72b 3.15±0.87a 3.10±0.94a 2.92±0.83a 表 3 脉冲电场刺激后金边龙舌兰释放空气负离浓度的动态变化(
$ \overline X \pm {{S D}} $ )Table 3. Dynamic changes on NAI released by A. americana after pulse electric field treatments (
$ \overline X \pm {{S D}} $ )不同处理组
Treatment group负离子浓度变化
Negative ion concentration changes/(个·cm−3)0 h 1 h 2 h 3 h 4 h 0 kV(CK) 521.36±17.86a 406.25±32.60b 364.45±12.35b 539.33±14.29b 400.78±10.25b 5 kV(T1) 526.17±19.67a 41986.22 ±5293.44 a126217.45 ±119339.75 a222001.80 ±256322.90 a416466.58 ±328669.54 a7 kV(T2) 592.93±21.17a 32412.12 ±25969.57 ab182844.66 ±93041.30 a131039.77 ±44299.84 a212401.10 ±91149.66 ab -
[1] 杨志坚, 温杭凯, 陈选阳, 等. 金边龙舌兰组织培养技术研究 [J]. 江苏农业科学, 2019, 47(5):37−39.YANG Z J, WEN H K, CHEN X Y, et al. Study on tissue culture technology of Agave americana var. marginata [J]. Jiangsu Agricultural Sciences, 2019, 47(5): 37−39. (in Chinese) [2] 焦淑萍, 陈彪, 姜虹. 龙舌兰抗炎作用的实验研究 [J]. 北华大学学报(自然科学版), 2001, 2(5):377−379.JIAO S P, CHEN B, JIANG H. On the Anti-inflammatory of Agave americana var. marginata hort [J]. Journal of Beihua University (Natural Science), 2001, 2(5): 377−379. (in Chinese) [3] 兑宝峰. 龙舌兰属植物栽培与繁殖 [J]. 中国花卉园艺, 2012(20):34−36.DUI B F. Cultivation and propagation of Agave plant [J]. China Flowers & Horticulture, 2012(20): 34−36. (in Chinese) [4] BUCKLEY R, ZHONG L S, YU H, et al. Health benefits of airborne terpenoids and aeroanions: Insights from thematic review of Chinese-language research on forest sensory experiences [J]. Environments, 2024, 11(4): 79. doi: 10.3390/environments11040079 [5] TIKHONOV V P, TSVETKOV V D, LITVINOVA E G, et al. Generation of negative air ions by plants upon pulsed electrical stimulation applied to soil [J]. Russian Journal of Plant Physiology, 2004, 51(3): 414−419. doi: 10.1023/B:RUPP.0000028690.74805.e2 [6] 李娜, 魏天静, 肖明扬, 等. 空气负离子对原发性高血压大鼠血压、氧化应激和炎症水平的影响及机制 [J]. 卫生研究, 2024, 53(02):300−309.LI N, WEI T J, XIAO M Y, et al. Effects and mechanisms of air anions on levels of blood pressure, oxidative stress and inflammation in primary hypertensive rats [J]. Health Research, 2024, 53(02): 300−309. [7] 张超英. 空气负离子对室内环境颗粒物影响的研究[D]. 北京: 北京化工大学, 2020.ZHANG C Y. Study on the influence of negative air ions on indoor environmental particles[D]. Beijing: Beijing University of Chemical Technology, 2020. (in Chinese) [8] 罗诗茵, 聂菁, 韩文敏, 等. 脉冲电场回收农产品加工废料中生物活性物质的研究进展[J]. 食品工业科技, 2024, 45(19): 392−398.LUO S Y, NIE J, HAN W M, et al. Recovery of bioactive substances in agricultural processing waste by pulsed electric field[J]. Food Industry Technology, 2024, 45(19): 392−398. [9] SIDDEEG A, ZENG X N, RAHAMAN A, et al. Effect of pulsed electric field pretreatment of date palm fruits on free amino acids, bioactive components, and physicochemical characteristics of the alcoholic beverage [J]. Journal of Food Science, 2019, 84(11): 3156−3162. doi: 10.1111/1750-3841.14825 [10] 张良, 王丽娟, 钱建亚. 脉冲电场处理油菜籽对菜籽油品质的影响 [J]. 中国油脂, 2017, 42(11):33−37.ZHANG L, WANG L J, QIAN J Y. Effect of pulsed electric field on quality of canola oil by treating oilseed grain [J]. China Oils and Fats, 2017, 42(11): 33−37. (in Chinese) [11] 宋婷, 张谧, 高吉喜, 等. 快速叶绿素荧光动力学及其在植物抗逆生理研究中的应用 [J]. 生物学杂志, 2011, 28(6):81−86.SONG T, ZHANG M, GAO J X, et al. Fast chlorophyll fluorescence kinetics and its application in plant physiology research [J]. Journal of Biology, 2011, 28(6): 81−86. (in Chinese) [12] KALAJI H M, JAJOO A, OUKARROUM A, et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions [J]. Acta Physiologiae Plantarum, 2016, 38(4): 102. doi: 10.1007/s11738-016-2113-y [13] 吴仁烨, 邓传远, 王彬, 等. 具备释放负离子功能室内植物的种质资源研究 [J]. 中国农学通报, 2011, 27(8):91−97.WU R Y, DENG C Y, WANG B, et al. Study on indoor plant germplasm resources which generate negative air ions [J]. Chinese Agricultural Science Bulletin, 2011, 27(8): 91−97. (in Chinese) [14] 习岗, 贺瑞瑞, 刘锴, 等. 脉冲电场对渗透胁迫下玉米幼苗自发光子辐射的影响 [J]. 农业工程学报, 2015(3):319−324.XI G, HE R R, LIU K, et al. Effect of pulsed electric field on spontaneous photon emission of corn seedlings under osmotic stress [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015(3): 319−324. (in Chinese) [15] FRATIANNI A, NIRO S, MESSIA M C, et al. Evaluation of carotenoids and furosine content in air dried carrots and parsnips pre-treated with pulsed electric field (PEF) [J]. European Food Research and Technology, 2019, 245(11): 2529−2537. doi: 10.1007/s00217-019-03367-0 [16] 王艳英, 邓传远, 郑金贵, 等. 植物源负离子发生器室内应用的研究 [J]. 广州大学学报(自然科学版), 2014, 13(1):29−37.WANG Y Y, DENG C Y, ZHENG J G, et al. Study on the indoor application of the plants-NAI generator [J]. Journal of Guangzhou University (Natural Science Edition), 2014, 13(1): 29−37. (in Chinese) [17] WU R Y. Research on generation of negative air ions by plants and stomatal characteristics under pulsed electrical field stimulation [J]. International Journal of Agriculture and Biology, 2017, 19(5): 1235−1245. doi: 10.17957/IJAB/15.0431 [18] 王红燕. 龙舌兰科植物在脉冲电场刺激下释放负离子浓度及叶肉细胞超微结构的变化[D]. 福州: 福建农林大学, 2013WANG H Y. Changes of negative ion concentration and ultrastructure of mesophyll cells released by Agavaceae plants under pulsed electric field stimulation[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013. (in Chinese) [19] WANG J, LI S H. Changes in negative air ions concentration under different light intensities and development of a model to relate light intensity to directional change [J]. Journal of Environmental Management, 2009, 90(8): 2746−2754. doi: 10.1016/j.jenvman.2009.03.003 [20] TIKHONOV V P, TSVETKOV V D, LITVINOVA E G, et al. Generation of negative air ions by wheat seedlings in a high voltage electrization of soil [J]. Biofizika, 2002, 47(1): 130−134. [21] 危也宁. 脉冲电场作用对植物释放负离子及生理机制的研究[D]. 福州: 福建农林大学, 2015.WEI Y N. Study on the release of negative ions from plants by pulsed electric field and its physiological mechanism[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese) [22] 吴仁烨. 功能型植物高效释放负离子及其发生器的研究[D]. 福州: 福建农林大学, 2011.WU R Y. Study on efficient release of negative ions from functional plants and its generator[D]. Fuzhou: Fujian Agriculture and Forestry University, 2011. (in Chinese) [23] 杨运经, 习岗, 刘锴, 等. 应用负高压脉冲技术提高植物空气净化能力的探讨 [J]. 高电压技术, 2011, 37(1):190−197.YANG Y J, XI G, LIU K, et al. Application of negative high-voltage pulse technology to improve air purification ability of plants [J]. High Voltage Engineering, 2011, 37(1): 190−197. (in Chinese) [24] STRASSERF R J, SRIVASTAVA A, GOVINDJEE. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria [J]. Photochemistry and Photobiology, 1995, 61(1): 32−42. doi: 10.1111/j.1751-1097.1995.tb09240.x [25] 丁旭玲, 张万超, 黄龙飞, 等. 常态下仙人掌科植物负离子释放量与其刺尖数量的相关性研究 [J]. 安徽农业大学学报, 2015, 42(2):263−267.DING X L, ZHANG W C, HUANG L F, et al. Correlation between the spine number and the release of negative air ions by cactaceous in the natural state [J]. Journal of Anhui Agricultural University, 2015, 42(2): 263−267. (in Chinese) [26] 张万超, 郑俊鸣, 丁旭玲, 等. 3种仙人掌科植物负离子释放量与释放通道的相关性研究 [J]. 热带作物学报, 2016, 37(7):1298−1305.ZHANG W C, ZHENG J M, DING X L, et al. Correlation between the negative air ions released by 3 species in Cactaceae and the releasing passage [J]. Chinese Journal of Tropical Crops, 2016, 37(7): 1298−1305. (in Chinese) [27] 吴仁烨, 郑金贵, 翁海勇, 等. 脉冲电场刺激对植物释放负离子的影响及其机理 [J]. 生态学杂志, 2017, 36(5):1224−1233.WU R Y, ZHENG J G, WENG H Y, et al. Influence of pulsed electrical fields on generation of negative air ions by plants and its mechanism [J]. Chinese Journal of Ecology, 2017, 36(5): 1224−1233. (in Chinese) [28] 原佳乐, 马超, 冯雅岚, 等. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应 [J]. 植物生理学报, 2018, 54(6):1119−1129.YUAN J L, MA C, FENG Y L, et al. Response of chlorophyll fluorescence transient in leaves of wheats with different drought resistances to drought stresses and rehydration [J]. Plant Physiology Journal, 2018, 54(6): 1119−1129. (in Chinese) [29] 陈文胜, 出佳范, 吕再辉, 等. 模拟酸雨处理后番茄叶片叶绿素含量及叶绿素荧光参数的动态变化 [J]. 植物资源与环境学报, 2019, 28(3):108−116.CHEN W S, CHU J F, LYU Z H, et al. Dynamic changes in chlorophyll content and chlorophyll fluorescence parameters of leaf of Lycopersicon esculentum after simulated acid rain treatment [J]. Journal of Plant Resources and Environment, 2019, 28(3): 108−116. (in Chinese) [30] 王兰兰, 李琦, 宋晓卉, 等. 环境条件对植物叶绿素荧光参数影响研究进展 [J]. 沈阳师范大学学报(自然科学版), 2019, 37(4):362−367.WANG L L, LI Q, SONG X H, et al. Effects of environmental conditions on chlorophyll fluorescence parameters of plants [J]. Journal of Shenyang Normal University (Natural Science Edition), 2019, 37(4): 362−367. (in Chinese) [31] SPERANZA A, CROSTI P, MALERBA M, et al. The environmental endocrine disruptor, bisphenol A, affects germination, elicits stress response and alters steroid hormone production in kiwifruit pollen [J]. Plant Biology, 2011, 13(1): 209−217. doi: 10.1111/j.1438-8677.2010.00330.x [32] 谢丰璞, 王楠, 高静, 等. 干旱及复水循环对苗期药用大黄叶片光合碳同化功能和光化学活性的影响 [J]. 西北植物学报, 2023, 43(11):1872−1887.XIE F P, WANG N, GAO J, et al. Effects of drought and re-watering cycle on photosynthetic carbon assimilation function and photochemical activity of Rheum of ficinale Baill. Leaves at seedling stage [J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(11): 1872−1887. (in Chinese) [33] APPENROTH K J, STÖCKEL J, SRIVASTAVA A, et al. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements [J]. Environmental Pollution, 2001, 115(1): 49−64. doi: 10.1016/S0269-7491(01)00091-4 [34] SNIDER J L, THANGTHONG N, PILON C, et al. OJIP-fluorescence parameters as rapid indicators of cotton (Gossypium hirsutum L. ) seedling vigor under contrasting growth temperature regimes [J]. Plant Physiology and Biochemistry, 2018, 132: 249−257. doi: 10.1016/j.plaphy.2018.09.015 [35] WENG H Y, WU M Y, LI X B, et al. High-throughput phenotyping salt tolerance in JUNCAOs by combining prompt chlorophyll a fluorescence with hyperspectral spectroscopy [J]. Plant Science, 2023, 330: 111660. doi: 10.1016/j.plantsci.2023.111660