Distribution and Properties of SSR in Transcriptome of Nymphaea Paul Stetson Flowers
-
摘要:
目的 通过解析保罗蓝睡莲花转录组数据的SSR位点特征信息,开发新的与表型相关的SSR标记,为睡莲种质资源评价、新品种选育提供科学依据。 方法 以热带睡莲保罗蓝不同花器官部位(雌蕊、雄蕊、花瓣)的转录组数据为背景材料,用MISA软件检索序列的SSR位点,采用Excel对位点特征进行分析作图,Primer 3.0软件设计引物,TP-M13-SSR PCR筛选引物。 结果 在花器官转录组的 39079 条Unigenes中共检测到12365 个SSR位点,位点发生频率为31.64%,平均每5.79 kb出现1个SSR位点。SSR位点的重复类型主要为二核苷酸重复碱基,占SSR位点总数的71.85%,优势重复类型为AG/CT,占碱基总数的61.34%;其次为三核苷酸重复碱基,为26.10%,优势重复类型是AAG/CTT,占比8.30%。SSR碱基重复次数在5~20次,序列长度为12~30 bp,平均长度18.38 bp。引物设计获得9212 对引物,从中随机挑选100对进行PCR扩增验证,筛选出9对多态性好的引物,可将12份睡莲种质在遗传相似系数为0.735时聚为3支。结论 热带睡莲保罗蓝花器官转录组中的SSR位点分布频率高、类型丰富,多态性较高,具较大的应用潜力。开发的9对SSR引物可将12份种质有效分开,进一步丰富了睡莲现有SSR标记,可为睡莲属植物的遗传多样性分析和分子辅助育种提供科学参考。 Abstract:Objective SSRs in the transcriptome of Nymphaea Paul Stetson flowers were studied to generate new markers for evaluating germplasms and facilitating breeding of tropical waterlilies. Method SSR loci were retrieved from the transcriptomes of floral pistils, stamens, and petals of Nymphaea Paul Stetson using MISA. Characteristics of the loci were analyzed by Excel, and primers designed by Primer 3.0 and screened by TP-M13-SSR PCR. Result There were 12365 SSR loci found in the39079 unigenes of the transcriptome at the frequency of 31.64% averaging one SSR locus per 5.79 kb. Most of the SSR loci had dinucleotide repeat motifs comprising 71.85% of total with AG/CT being the dominant unit that made up 61.34% of the motifs. Trinucleotide repeat motifs accounted for 26.10% of the sites with AAG/CTT being dominant at 8.30%. The repeating frequency was 5–20 times with a sequence of 12–30 bp averaging 18.38 bp long. Of the9212 pairs of primers designed, 100 were randomly selected for a validation by PCR amplification to arrive at 9 pairs with high polymorphism being used as the markers. Subsequently, the 12 germplasms were clustered into 3 branches under a genetic similarity coefficient of 0.7375.Conclusion The SSR loci in the Nymphaea Paul Stetson transcriptome were high on distribution frequency, rich in diversity, greatly polymorphic, and desirable for applications. The 9 pairs of SSR primers identified in this study extended the existing marker repertoire facilitating effective germplasm differentiation on waterlilies. -
Key words:
- tropical waterlily /
- transcriptome /
- SSR /
- sequence analysis
-
表 1 12份睡莲种质的样品信息
Table 1. Information on 12 waterlily germplasms
编号
No.样品名称
Sample name来源
Source属性
Attribute1 喀麦隆 Nymphaea zenkeri 海南海口 原种 2 阅卿 Nymphaea Yue Qing 广西都安 园艺杂交种 3 鲁吉娜 Nymphaea rudgeana 江苏南京 原种 4 蓝星 Nymphaea colorata 海南三亚 原种 5 雪白睡莲 Nymphaea candida 海南三亚 原种 6 增殖睡莲 Nymphaea prolifera 海南三亚 原种 7 卡本 Nymphaea carpentariae 海南三亚 原种 8 小花睡莲 Nymphaea micrantha 海南三亚 原种 9 变色澳洲 Nymphaea atrans 云南大理 原种 10 小白子午莲 Nymphaea tetragona 浙江温州 原种 11 我的心 Nymphaea Wode Xin 海南海口 园艺杂交种 12 印度红 Nymphaea rubra 海南三亚 原种 表 2 保罗蓝花转录组SSR中重复碱基类型分析
Table 2. Type and repeat motifs of SSR loci in transcriptome of N. Paul Stetson flowers
重复碱基类型
Repeat base type数量
Number占总SSR比例
Proportion of total SSR/%出现频率
Frequency of occurrence/%分布平均距离
Mean distance/kb平均长度
Average length/bp单碱基重复 Mononucleotide 91 0.73 0.23 786.23 28.19 双碱基重复 Dinucleotide 8884 71.85 22.73 8.05 18.34 三碱基重复 Trinucleotide 3227 26.10 8.26 22.17 17.96 四碱基重复 Tetranucleotide 86 0.70 0.22 831.95 21.21 五碱基重复 Pentanucleotide 18 0.14 0.05 3974.85 27.50 六碱基重复 Hexanucleotide 59 0.48 0.15 1212.67 32.44 总计 Total 12365 100 31.64 5.79 18.38 表 3 保罗蓝花转录组中不同重复次数的SSR数量分析
Table 3. Number of SSR with different repetitions in transcriptome of N. Paul Stetson flowers
重复类型
Repeat typeSSR数量 Amount/个 总计
Total5次 6次 7次 8次 9次 10次 11次 12次 13次 14次 15次 16次 17次 18次 19次 20次 21~29次 30~41次 单核苷酸
Mononucleotide0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 64 4 91 二核苷酸
Dinucleotide0 2273 1518 1204 902 720 566 394 276 240 150 169 107 84 93 42 140 6 8884 三核苷酸
Trinucleotide1798 718 333 157 79 37 35 19 19 11 7 7 4 1 2 0 0 0 3227 四核苷酸
Tetranucleotide66 17 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 86 五核苷酸
Pentanucleotide13 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 六核苷酸
Hexanucleotide43 12 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 59 总计 Total 1920 3023 1854 1365 982 758 601 413 295 251 157 176 111 85 95 65 204 8 12365 表 4 保罗蓝转录组的SSR引物信息
Table 4. Information on SSR primers in transcriptome of N. Paul Stetson flowers
重复碱基类型
Repeat base type符合引物设计要求的 SSR
SSRs that meet primer design requirements引物长度
Primer length/bp退火温度
Annealing temperature/℃上、下游引物退火温度差
Difference in annealing temperature
between F and R primers/℃单碱基重复 Mononucleotide 65 20~21 58.98~60.80 <2 二碱基重复 Dinucleotide 5619 18~27 57.02~62.88 <4 三碱基重复 Trinucleotide 2502 18~27 57.04~62.74 <4 四碱基重复 Tetranucleotide 56 20~24 58.90~60.44 <1 五碱基重复 Pentanucleotide 15 19~20 59.72~60.76 <1 六碱基重复 Hexanucleotide 44 18~21 59.02~62.02 <2 复合型重复 Complex repeat type 911 18~27 57.07~62.79 <4 表 5 筛选出的9对SSR引物序列信息
Table 5. Information on 9 selected pairs of SSR primers
引物编号
Primer number重复单元
Repeating motif引物序列(5′-3′)
Primer sequence等位
基因数
Na有效等位
基因数
NeNei’s基因
多样性指数
HShannon’s
信息指数
I多态性
信息指数
PIC位点所在
染色体编号
Chromosome
number of
the siteP1 (AG)6 F: CAAAGGCTTACAAGGTTTAACG
R: CGCTTGGTTCTATTCGGAAA3 1.13 0.11 0.22 0.55 1 P20 (GAA)11 F:TTTGCGGAATTTTATAGCCG
R:AGGACATTCGCGTACTGCTT6 1.13 0.11 0.22 0.72 3 P25 (TCA)6 F:TTCTCTGCGAGAGTGCAAGA
R:CAAGCAAGCCTCTGGGTTAG4 1.20 0.16 0.28 0.65 4 P26 (CA)6(GA)11 F:ACATGCATGATGTTCGTGCT
R:TTTTGCTGTCAATCTGCGAC4 1.11 0.10 0.21 0.60 4 P33 (GA)12 F:TGAACGCCACCAGATGTTTA
R:CATGAAGCGAAGCAATCTCA3 1.11 0.10 0.20 0.55 5 P35 (GCA)5 F:ACCAAGGTGATGGTCCAGAG
R:ACCCAACGGGGAGTTAAAAG4 1.31 0.20 0.33 0.69 5 P51 (TC)10 F:TGATCGAGAAAAATGGGGAG
R:CACATGCAAGTGTCACACGA5 1.11 0.09 0.20 0.62 7 P63 (GCA)5 F:TTGGACGCTGCAGAATTTTT
R:TCCTTCCACCCATCTCTTTG4 1.14 0.12 0.23 0.62 9 P77 (TC)11 F:CACCCTATACACGTCCCACC
R:GCAGAACCCATGTTCCTGTT5 1.12 0.11 0.21 0.64 11 平均值 Average 4.22 1.15 0.12 0.23 0.63 -
[1] 李淑娟, 尉倩, 陈尘, 等. 中国睡莲属植物育种研究进展 [J]. 植物遗传资源学报, 2019, 20(4):829−835.LI S J, YU Q, CHEN C, et al. Breeding progress of waterlilies in China [J]. Journal of Plant Genetic Resources, 2019, 20(4): 829−835. (in Chinese) [2] 毛立彦, 龙凌云, 黄秋伟, 等. 基于SRAP分子标记的147份睡莲属植物遗传多样性分析 [J]. 南方农业学报, 2023, 54(2):454−466.MAO L Y, LONG L Y, HUANG Q W, et al. Genetic diversity analysis of 147 Nymphaea Linn. plants based on SRAP molecular marker [J]. Journal of Southern Agriculture, 2023, 54(2): 454−466. (in Chinese) [3] KALIA R K, RAI M K, KALIA S, et al. Microsatellite markers: An overview of the recent progress in plants [J]. Euphytica, 2011, 177(3): 309−334. doi: 10.1007/s10681-010-0286-9 [4] 苏群, 杨亚涵, 田敏, 等. 睡莲种质资源遗传多样性分析及DNA指纹图谱构建 [J]. 热带作物学报, 2020, 41(2):258−266.SU Q, YANG Y H, TIAN M, et al. Genetic diversity analysis and DNA fingerprinting construction of waterlily germplasm resources [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 258−266. (in Chinese) [5] POCZAI P, MÁTYÁS K K, SZABÓ I, et al. Genetic variability of thermal Nymphaea (Nymphaeaceae) populations based on ISSR markers: Implications on relationships, hybridization, and conservation [J]. Plant Molecular Biology Reporter, 2011, 29(4): 906−918. doi: 10.1007/s11105-011-0302-9 [6] 苏群, 王虹妍, 卢家仕, 等. 睡莲的SSR引物对及合成方法和应用: CN113832254A[P]. 2021-12-24. [7] PARVEEN S, SINGH N, ADIT A, et al. Contrasting reproductive strategies of two Nymphaea species affect existing natural genetic diversity as assessed by microsatellite markers: Implications for conservation and wetlands restoration [J]. Frontiers in Plant Science, 2022, 13: 773572. doi: 10.3389/fpls.2022.773572 [8] QIAN Z H, MUNYWOKI J M, WANG Q F, et al. Molecular identification of African Nymphaea species (water lily) based on ITS, trnT-trnF and rpl16 [J]. Plants, 2022, 11(18): 2431. doi: 10.3390/plants11182431 [9] LIU G, XIE Y J, ZHANG D Q, et al. Analysis of SSR loci and development of SSR primers in Eucalyptus [J]. Journal of Forestry Research, 2018, 29(2): 273−282. doi: 10.1007/s11676-017-0434-3 [10] OLIVEIRA DE OLIVEIRA L, CARLOS BEISE D, DAMIAN DOS SANTOS D, et al. Molecular markers in Carya illinoinensis (Juglandaceae): From genetic characterization to molecular breeding [J]. The Journal of Horticultural Science and Biotechnology, 2021, 96(5): 560−569. doi: 10.1080/14620316.2021.1892534 [11] JIANG M, YAN S, REN W C, et al. Genetic diversity of the Chinese medicinal plant Astragali Radix based on transcriptome-derived SSR markers [J]. Electronic Journal of Biotechnology, 2023, 62: 13−20. doi: 10.1016/j.ejbt.2022.12.001 [12] SHI Z Y, ZHAO W Q, LI Z A, et al. Development and validation of SSR markers related to flower color based on full-length transcriptome sequencing in Chrysanthemum [J]. Scientific Reports, 2022, 12(1): 22310. doi: 10.1038/s41598-022-26664-3 [13] 叶鹏, 李显煌, 唐军荣, 等. 云南金花茶转录组SSR的分布及其序列特征 [J]. 中南林业科技大学学报, 2019, 39(9):86−91.YE P, LI X H, TANG J R, et al. Distribution and characteristics of SSR in transcriptome of Camellia fascicularis [J]. Journal of Central South University of Forestry & Technology, 2019, 39(9): 86−91. (in Chinese) [14] 辛静, 辛雅萱, 董章宏, 等. 云南火焰兰转录组SSR分布及其序列特征分析 [J]. 南方农业学报, 2020, 51(7):1634−1641.XIN J, XIN Y X, DONG Z H, et al. Distribution and sequence characteristics of SSR in transcriptome of Renanthera imschootiana Rolfe [J]. Journal of Southern Agriculture, 2020, 51(7): 1634−1641. (in Chinese) [15] ZHANG L S, YANG X N, QI X N, et al. Characterizing the transcriptome and microsatellite markers for almond (Amygdalus communis L. ) using the Illumina sequencing platform [J]. Hereditas, 2017, 155: 14. [16] JIANG B, XIE D S, LIU W R, et al. De novo assembly and characterization of the transcriptome, and development of SSR markers in wax gourd (Benicasa hispida) [J]. PLoS One, 2013, 8(8): e71054. doi: 10.1371/journal.pone.0071054 [17] TEMNYKH S, DECLERCK G, LUKASHOVA A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L. ): Frequency, length variation, transposon associations, and genetic marker potential [J]. Genome Research, 2001, 11(8): 1441−1452. doi: 10.1101/gr.184001 [18] 梁燕, 韩传明, 孙超, 等. 基于SSR标记的核桃种质资源遗传多样性与遗传结构分析 [J]. 北方园艺, 2022, (9):47−54.LIANG Y, HAN C M, SUN C, et al. Genetic diversity and genetic structure analysis of walnut germplasm resources based on SSR markers [J]. Northern Horticulture, 2022(9): 47−54. (in Chinese) [19] CRISTANCHO M, ESCOBAR C. Transferability of SSR markers from related Uredinales species to the coffee rust Hemileia vastatrix [J]. Genetics and Molecular Research: GMR, 2008, 7(4): 1186−1192. doi: 10.4238/vol7-4gmr493 [20] 苏群, 田敏, 刘俊, 等. 基于生物信息学的睡莲SSR位点特征分析 [J]. 西南农业学报, 2021, 34(10):2076−2083.SU Q, TIAN M, LIU J, et al. SSR loci characteristic analysis of water lily based on bio-informatics methodology [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(10): 2076−2083. (in Chinese) [21] 张华丽, 丛日晨, 王茂良, 等. 基于万寿菊转录组测序的SSR标记开发 [J]. 园艺学报, 2018, 45(1):159−167.ZHANG H L, CONG R C, WANG M L, et al. Development of SSR molecular markers based on transcriptome sequencing of Tagetes erecta [J]. Acta Horticulturae Sinica, 2018, 45(1): 159−167. (in Chinese) [22] 杜晓华, 杨雅萍, 朱小佩, 等. 三色堇转录组SSR分析及分子标记开发 [J]. 园艺学报, 2019, 46(4):797−806.DU X H, YANG Y P, ZHU X P, et al. Development of genic-SSR markers by transcriptome sequencing in Viola × wittrockiana [J]. Acta Horticulturae Sinica, 2019, 46(4): 797−806. (in Chinese) [23] 郭聪, 陈燕, 王莹, 等. 美国红枫转录组SSR序列分析 [J]. 中南林业科技大学学报, 2021, 41(7):132−141.GUO C, CHEN Y, WANG Y, et al. Sequence analysis of SSR in transcriptome of American red maple [J]. Journal of Central South University of Forestry & Technology, 2021, 41(7): 132−141. (in Chinese) [24] 张震, 许彦明, 陈永忠, 等. 油茶转录组测序与SSR特征分析 [J]. 西南林业大学学报, 2018, 38(6):63−68.ZHANG Z, XU Y M, CHEN Y Z, et al. Transcriptome sequencing and analysis of SSR characteristics of Camellia oleifera [J]. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(6): 63−68. (in Chinese) [25] 李娜, 姚民, 梅兰菊, 等. 基于山桐子转录组序列的SSR分子标记开发 [J]. 应用与环境生物学报, 2017, 23(5):952−958.LI N, YAO M, MEI L J, et al. Development of SSR molecular markers based on transcriptome sequencing of Idesia polycarpa Maxim [J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(5): 952−958. (in Chinese) [26] VARSHNEY R K, GRANER A, SORRELLS M E. Genic microsatellite markers in plants: Features and applications [J]. Trends in Biotechnology, 2005, 23(1): 48−55. doi: 10.1016/j.tibtech.2004.11.005 [27] YANG Q W, JIANG Y J, WANG Y P, et al. SSR loci analysis in transcriptome and molecular marker development in Polygonatum sibiricum [J]. BioMed Research International, 2022, 2022: 4237913. [28] 杨彬, 许蔷薇, 牛明月, 等. 云锦杜鹃转录组SSR分析及其分子标记开发 [J]. 核农学报, 2018, 32(12):2335−2345.YANG B, XU Q W, NIU M Y, et al. Analysis of SSR information in transcriptome and development of SSR molecular markers in Rhododendron fortunei [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(12): 2335−2345. (in Chinese) [29] 郭俊, 朱婕, 谢尚潜, 等. 油梨转录组SSR分子标记开发与种质资源亲缘关系分析 [J]. 园艺学报, 2020, 47(8):1552−1564.GUO J, ZHU J, XIE S Q, et al. Development of SSR molecular markers based on transcriptome and analysis of genetic relationship of germplasm resources in avocado [J]. Acta Horticulturae Sinica, 2020, 47(8): 1552−1564. (in Chinese) [30] 蔡金峰, 杨晓明, 郁万文, 等. 基于苦楝转录组测序的SSR分子标记开发 [J]. 林业科学, 2021, 57(6):85−92.CAI J F, YANG X M, YU W W, et al. Development of SSR molecular markers based on transcriptome sequencing of Melia azedarach [J]. Scientia Silvae Sinicae, 2021, 57(6): 85−92. (in Chinese) [31] 郝广婧, 祁银燕, 张得芳, 等. 基于转录组的黑果枸杞SSR分布特征分析及引物设计 [J]. 分子植物育种, 2019, 17(13):4342−4350.HAO G J, QI Y Y, ZHANG D F, et al. Analysis of SSR distribution characteristics and primer design of Lycium ruthenicum Murr. based on transcriptome [J]. Molecular Plant Breeding, 2019, 17(13): 4342−4350. (in Chinese) [32] HARR B, SCHLÖTTERER C. Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide underrepresentation [J]. Genetics, 2000, 155(3): 1213−1220. doi: 10.1093/genetics/155.3.1213 [33] ZHANG L S, CHEN F, ZHANG X T, et al. The water lily genome and the early evolution of flowering plants [J]. Nature, 2020, 577(7788): 79−84. doi: 10.1038/s41586-019-1852-5 [34] 刘思思, 乔中全, 曾慧杰, 等. 灰毡毛忍冬转录组SSR位点分析及EST-SSR标记开发 [J]. 分子植物育种, 2021, 19(9):3015−3021.LIU S S, QIAO Z Q, ZENG H J, et al. Analysis on SSR loci in transcriptome and development of EST-SSR molecular markers in Lonicera macranthoides [J]. Molecular Plant Breeding, 2021, 19(9): 3015−3021. (in Chinese)