• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫芽六堡茶花青素合成相关基因的转录组测序及表达分析

梁燕妮 魏诗琴 乔如颖 梁剑锋 谭花桂

梁燕妮,魏诗琴,乔如颖,等. 紫芽六堡茶花青素合成相关基因的转录组测序及表达分析 [J]. 福建农业学报,2024,39(6):711−719 doi: 10.19303/j.issn.1008-0384.2024.06.010
引用本文: 梁燕妮,魏诗琴,乔如颖,等. 紫芽六堡茶花青素合成相关基因的转录组测序及表达分析 [J]. 福建农业学报,2024,39(6):711−719 doi: 10.19303/j.issn.1008-0384.2024.06.010
LIANG Y N, WEI S Q, QIAO R Y, et al. Transcriptome Analysis on Anthocyanin Synthesis-related Genes in Liupao Tea Plants [J]. Fujian Journal of Agricultural Sciences,2024,39(6):711−719 doi: 10.19303/j.issn.1008-0384.2024.06.010
Citation: LIANG Y N, WEI S Q, QIAO R Y, et al. Transcriptome Analysis on Anthocyanin Synthesis-related Genes in Liupao Tea Plants [J]. Fujian Journal of Agricultural Sciences,2024,39(6):711−719 doi: 10.19303/j.issn.1008-0384.2024.06.010

紫芽六堡茶花青素合成相关基因的转录组测序及表达分析

doi: 10.19303/j.issn.1008-0384.2024.06.010
基金项目: 广西自然科学基金面上项目(2023GXNSFAA026221);广西高校中青年教师基础能力提升项目(2021KY0680);广西大学生创新创业项目(2024年)
详细信息
    作者简介:

    梁燕妮(1980 —),女,硕士,高级实验师,主要从事植物分子生物学相关研究,E-mail:371200021@qq.com

  • 中图分类号: S571.1

Transcriptome Analysis on Anthocyanin Synthesis-related Genes in Liupao Tea Plants

  • 摘要:   目的  紫芽六堡茶(Camellia sinensis var. sinensis cv. Liupao)是六堡群体种茶树中芽叶呈紫色且富含花青素的特异品系,研究紫芽六堡茶花青素合成相关基因可为深入了解紫芽六堡茶花青素积累的分子机制奠定基础,为高花青素六堡茶树的分子育种提供遗传资源。  方法  利用盐酸乙醇分别提取紫芽和绿芽六堡茶芽中花青素,测定其含量;通过Illumina Hiseq 2500高通量测序平台对紫芽和绿芽六堡茶进行转录组测序,分析花青素合成相关基因的表达水平,找出差异表达基因,进一步进行GO功能分析和KEGG富集分析;并通过荧光定量PCR对转录组测序结果进行验证。  结果  紫芽六堡茶花青素含量是绿芽的7倍;转录组测序共获得165570条Unigene,平均长度1450 bp;对测序结果进行分析,筛选出与紫芽六堡茶花青素生物合成通路相关的基因243条,进一步筛选出43个差异显著表达基因,这些基因共编码14个关键酶,包括苯丙氨酸氨裂解酶(phenylalanine ammonialyase, PAL)、查尔酮合成酶(chalcone synthase, CHS)、查尔酮异构酶(chalcone isomerase, CHI)、肉桂酸4-羟化酶(cinnamate acid 4-hydroxylase, C4H)、花色素苷还原酶(anthocyanidin reductase, ANR)、4-香豆酸CoA连接酶(4-coumarate-Co A ligase, 4CL)、乙酰辅酶A羧化酶(acetyl-CoA carboxylase, ACC)、黄酮醇合成酶(flavonol synthase, FLS)、黄酮3′,5′-羟化酶(flavonoid-3′,5′-hydroxylase, F3'5'H)、黄酮3′-羟化酶(flavonoid 3'-hydroxylase, F3'H)、黄酮3-羟化酶(flavanone-3-hydroxylase, F3H)、二氢黄酮醇还原酶(dihydroflavonol 4-reductase, DFR)、花青素成合酶(anthocyanidin synthase, ANS)、无色花青素还原酶(leucoanthocyanidin reductase, LAR)。  结论  编码花青素生物合成的14个关键酶基因中有34个基因在紫芽六堡茶中上调表达,推测这些基因在紫芽花青素积累中起重要作用。
  • 图  1  试验材料

    Figure  1.  Experimental materials

    图  2  紫芽和绿芽六堡茶花青素含量比较

    **表示差异极显著(P<0.01)。

    Figure  2.  Anthocyanin contents in Liupao Tea plants with purple or green buds

    **: extremely significant at 0.01 level.

    图  3  绿芽vs紫芽差异基因散点图

    Figure  3.  Scatter plot of differential genes in two varieties of Liupao Tea plants

    图  6  紫芽vs绿芽差异基因表达量热图

    G-1、G-2、G-3为紫芽的3个重复,F-1、F-2、F-3为绿芽的3个重复。颜色越红,表达量越高,颜色越蓝,表达量越低。

    Figure  6.  Heatmap of differential expressions of genes in two varieties of Liupao Tea plants

    G-1, G-2, and G-3: 3 samples of tea plants with purple buds; F-1, F-2, and F-3: 3 samples of tea plants with green buds; deeper red color indicates higher expression; deeper blue, lower expression.

    图  7  花青素生物合成差异基因GO富集分析

    1~20分别为金属离子结合、催化活性、氧化还原酶活性、转移酶活性、作用于配体的氧化还原酶活性、铁离子结合、曲红素酸盐、连接酶活性、单加氧酶活性、柚皮素-查尔酮合酶活性、苯丙氨酸解氨酶活性、乙酰辅酶a羧化酶活性、分子内裂解酶活性、查尔酮异构酶活性、双加氧酶活性、类黄酮生物合成过程、生物合成过程、肉桂酸生物合成过程、生物合成过程、肉桂酸生物合成过程、L-苯丙氨酸分解代谢过程、脂肪酸生物合成。

    Figure  7.  GO-enrichment analysis on differential genes associated with anthocyanin biosynthesis

    1–20 was metal ion binding, catalytic activity, oxidoreductase activity, transferase activity, oxidoreductase activity acting on paired donors, iron ion binding,heme binding, ligase activity, monooxygenase activity, naringenin-chalcone synthase activity, phenylalanine ammonia-lyase activity, acetyl-CoA carboxylase activity, intramolecular-lyase activity, chalcone isomerase activity, dioxygenase activity, flavonoid biosynthetic process, biosynthetic process, cinnamic acid biosynthetic process, L-phenylalanine catabolic process,fatty acid biosynthetic process, respectively.

    图  8  花青素生物合成差异基因KEGG富集

    1~12分别为类黄酮生物合成、苯丙氨酸代谢、苯丙素的生物合成、泛素和其他萜类醌的生物合成、丙酸代谢、黄酮和黄酮醇的生物合成、脂肪酸生物合成、类二苯乙烯生物合成、脂肪酸代谢、丙酮酸代谢、半胱氨酸和蛋氨酸的代谢、昼夜节律植物。

    Figure  8.  KEGG enrichment on differential genes associated with anthocyanin biosynthesis

    1–12 was flavonoid biosynthesis, phenylalanine metabolism, phenylpropanoid biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, propanoate metabolism, flavone and flavonol biosynthesis, fatty acid biosynthesis, stilbenoid biosynthesis, fatty acid metabolism, pyruvate metabolism, cysteine and methionine metabolism, circadian rhythm – plant, respectively.

    图  9  差异基因荧光定量PCR验证

    *表示差异显著 (P<0.05),**表示差异极显著 (P<0.01)。

    Figure  9.  qRT-PCR validation on RNA-Seq data

    *: significant difference at P<0.05; **: extremely significant difference at P<0.01.

    表  1  荧光定量 PCR 引物序列

    Table  1.   Primers for qRT-PCR

    引物名称
    Primer name
    基因ID
    Gene ID
    引物序列(5′-3′)
    Primer sequence(5′-3′)
    序列长度
    Sequence length/bp
    PIP Unigene82719 F:TTGTGGTGCTGCTGTTGTCA;R:TGGCGGAGAAGACGGTGTA 158
    psaG Unigene19457 F:CGAGCCAAAGAGTATGTGAGTC;R:AGTAAGCAACGATGTGTCCAAT 103
    purH Unigene31003 F:GAAGCAGCCGACTGTTGGA;R:CCACCAGCATTAACCTCAGAGA 144
    CYP75A Unigene14189 F:TGATAAGCCGAAGCCTTGTGT;R:CGATTGCGTGGATGGACT 112
    CHI Unigene41427 F:ACAATGTCTCCGTCGCAGTCA ;R:AGCCGTGAACTTGATGAACTTG 161
    PAL CL10001.Contig25 F:GCAAAGCCCAACCAAGTAGG;R:GCCGAGCAACACAACCAAG 114
    4CL Unigene2852 F:TGCTGTTGTGCTCGCTGAG;R:AGTGACCACCATCGGATTCTTC 158
    ANS Unigene69431 F:AACCGCAAGTACAAGAGCATTC;R:CTCCTCCTCCGTCACTGTCT 138
    LAR CL6821.Contig1 F:ATGACTGTGTTGGAATCTGTGT;R:CTAGCTTCGGCGATGAACTG 92
    CsEF CsEF1 F:TTGGACAAGCTCAAGGCTGAACG;R:ATGGCCAGGAGCATCAATGACAGT 109
    下载: 导出CSV

    表  2  转录组测序有效数据统计

    Table  2.   Statistics on effective data

    样本
    Sample
    过滤前的序列数
    Raw reads /M
    过滤后的序列数
    Clean reads/M
    过滤后的序列占比
    Clean reads ratio/%
    过滤后的碱基数
    Clean bases/Gb
    Q20数量
    Q20 number/M
    Q20占比
    Q20 ratio/%
    Q30数量
    Q30 number/M
    Q30占比
    Q30 ratio/%
    紫芽G-1 43.82 42.2 96.31 6.33 42.43 96.83 40.26 91.88
    紫芽G-2 43.82 42.42 96.79 6.36 42.52 97.03 40.45 92.31
    紫芽G-3 43.82 42.41 96.79 6.36 42.5 96.99 40.41 92.22
    绿芽F-1 45.57 43.59 95.66 6.54 44.17 96.94 42.01 92.19
    绿芽F-2 43.82 42.61 97.23 6.39 42.50 96.98 40.41 92.24
    绿芽F-3 43.82 42.54 97.08 6.38 42.46 96.89 40.32 92.02
    下载: 导出CSV

    表  3  紫芽六堡茶花青素合成相关的差异显著基因

    Table  3.   Significantly differential genes associated with anthocyanin synthesis

    基因名称
    Name
    基因 ID
    Gene ID
    绿芽中相对表达量
    Green bud expression
    紫芽中相对表达量
    Purple bud expression
    差异倍数
    Differential multiple
    表达调控
    Regulated
    PAL CL10001.Contig10 0.040 16.373 8.428 上调 Up
    PAL CL10001.Contig19 1.926 20.020 3.284 上调 Up
    PAL CL10001.Contig9 0.443 8.380 4.222 上调 Up
    CHS CL13438.Contig10 0.000 83.240 9.947 上调 Up
    CHS CL13438.Contig16 0.313 42.316 5.994 上调 Up
    CHS CL13438.Contig4 1.263 122.906 5.154 上调 Up
    CHS Unigene23474 0.576 31.160 5.285 上调 Up
    CHS Unigene9932 0.526 19.780 4.808 上调 Up
    CHI CL1850.Contig6 0.796 6.346 2.948 上调 Up
    CHI CL5568.Contig1 85.453 284.253 1.708 上调 Up
    CHI Unigene41427 14.090 76.673 2.341 上调 Up
    CHI Unigene72176 0.050 8.013 5.537 上调 Up
    DFR Unigene25358 1.156 0.053 −4.396 下调 Down
    DFR Unigene8872 0.883 0.080 −3.165 下调 Down
    DFR Unigene8644 0.000 1.800 7.766 上调 Up
    DFR CL13149.Contig6 0.030 1.043 5.484 上调 Up
    C4H CL1010.Contig15 1.133 5.286 2.164 上调 Up
    C4H CL10269.Contig2 0.000 12.236 7.711 上调 Up
    C4H CL5289.Contig2 158.473 444.453 1.463 上调 Up
    ANR CL1162.Contig11 0.033 31.566 9.650 上调 Up
    ANR CL1162.Contig14 8.700 422.806 5.531 上调 Up
    ANR CL1162.Contig2 0.070 23.650 7.396 上调 Up
    4CL Unigene18597 0.676 22.903 4.901 上调 Up
    4CL Unigene5041 1.440 54.046 5.109 上调 Up
    4CL Unigene79704 13.510 37.350 1.440 上调 Up
    4CL Unigene9176 0.186 82.623 8.500 上调 Up
    ACC CL10106.Contig13 0.606 10.120 3.698 上调 Up
    ACC Unigene6677 0.670 6.476 3.095 上调 Up
    ACC CL10106.Contig22 6.416 17.563 1.432 上调 Up
    F3'5'H Unigene14189 2.396 302.993 6.088 上调 Up
    LAR CL52.Contig1 2.650 0.000 −6.676 下调 Down
    LAR CL6821.Contig1 188.293 2.716 −6.078 下调 Down
    LAR Unigene12558 3.456 0.190 −3.935 下调 Down
    ANS CL9955.Contig1 0.040 2.073 4.915 上调 Up
    ANS Unigene16647 0.106 6.580 5.672 上调 Up
    ANS Unigene5088 0.330 2.420 2.666 上调 Up
    FLS Unigene62039 1.790 0.210 −3.455 下调 Down
    FLS Unigene16307 5.530 1.143 −2.245 下调 Down
    FLS CL4659.Contig3 5.803 0.410 −3.785 下调 Down
    FLS CL3149.Contig1 158.973 0.676 −7.731 下调 Down
    F3'H CL1322.Contig3 0.393 25.246 5.605 上调 Up
    F3H Unigene23406 220.476 558.353 1.301 上调 Up
    F3H Unigene45907 0.286 39.816 4.832 上调 Up
    下载: 导出CSV
  • [1] 刘富知, 黄建安, 付冬和, 等. 茶树上红紫色芽叶部分生化特性的研究 [J]. 湖南农业大学学报, 2000, 26(1):41−42,57.

    LIU F Z, HUANG J A, FU D H, et al. Biochemical properties of new shoots of tea trees [J]. Journal of Hunan Agricultural University, 2000, 26(1): 41−42,57. (in Chinese)
    [2] 张凯凯, 苏鸿锋, 林泳恩, 等. 高花青素茶呈色与花青素积累机制研究进展 [J]. 食品安全质量检测学报, 2022, 13(11):3585−3592. doi: 10.3969/j.issn.2095-0381.2022.11.spaqzljcjs202211025

    ZHANG K K, SU H F, LIN Y E, et al. Research progress on the mechanism of color generation and anthocyanin accumulation in anthocyanin-rich tea [J]. Journal of Food Safety & Quality, 2022, 13(11): 3585−3592. (in Chinese) doi: 10.3969/j.issn.2095-0381.2022.11.spaqzljcjs202211025
    [3] LAI Y S, LI S, TANG Q, et al. The dark-purple tea cultivar ‘ziyan’ accumulates a large amount of delphinidin-related anthocyanins [J]. Journal of Agricultural and Food Chemistry, 2016, 64(13): 2719−2726. doi: 10.1021/acs.jafc.5b04036
    [4] 解东超. 紫娟茶中花青素及其在加工过程中变化规律研究[D]. 北京: 中国农业科学院, 2017.

    XIE D C. Research on anthocyanins of Zijuan and their varying patterns during the process[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
    [5] DA SILVA T B V, CASTILHO P A, SÁ-NAKANISHI A B, et al. The inhibitory action of purple tea on in vivo starch digestion compared to other Camellia sinensis teas[J]. Food Research International, 2021, 150(Pt A): 110781.
    [6] 王萌, 常格, 王琦, 等. 4种园林树木叶片秋季变色期的呈色机理 [J]. 林业与生态科学, 2020, 35(1):93−98.

    WANG M, CHANG G, WANG Q, et al. The leaf color mechanism of four tree species with red leaves in autumn color-changing period [J]. Forestry and Ecological Sciences, 2020, 35(1): 93−98. (in Chinese)
    [7] 夏溪, 龚睿, 张春英. 不同颜色锦绣杜鹃花瓣中花青素苷组成及呈色机制[J]. 江苏农业学报, 2022, 38(1): 207−213.

    XIA X, GONG R, ZHANG C Y. Anthocyanin composition and coloration mechanism in petals of Rhododendron pulchrum with different colors[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(1): 207−213. (in Chinese)
    [8] 李健. ‘紫娟’茶树紫叶花青素积累机理的转录组分析[D]. 福州: 福建农林大学, 2016.

    LI J. Transcriptome analysis reveals the accumulation mechanism of anthocyanins in ’zijuan’ tea [Camellia Sinensis Var. Asssamica (Masters) Kitamura] leaves[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese)
    [9] 向奕, 刘硕谦, 龚志华, 等. 茶树紫芽中花青素形成相关基因差异表达分析 [J]. 茶叶科学, 2018, 38(5):439−449. doi: 10.3969/j.issn.1000-369X.2018.05.001

    XIANG Y, LIU S Q, GONG Z H, et al. Differential expression analysis of genes related to anthocyanin biosynthesis in purple buds of tea plant(Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(5): 439−449. (in Chinese) doi: 10.3969/j.issn.1000-369X.2018.05.001
    [10] 刘悦, 曲浩, 李友勇, 等. 红芽直立茶紫色叶形成机制的转录组分析 [J]. 茶叶通讯, 2019, 46(4):409−418. doi: 10.3969/j.issn.1009-525X.2019.04.006

    LIU Y, QU H, LI Y Y, et al. Transcriptome analysis of the formation mechanism of purple leaf in Camellia assamica cv. with erect red bud [J]. Journal of Tea Communication, 2019, 46(4): 409−418. (in Chinese) doi: 10.3969/j.issn.1009-525X.2019.04.006
    [11] 许丽颖, 刘斗南, 刘月. 不同茶树品种叶片的花青素研究进展 [J]. 福建茶叶, 2019, 41(3):4−5. doi: 10.3969/j.issn.1005-2291.2019.03.003

    XU L Y, LIU D N, LIU Y. Research progress of anthocyanins in leaves of different tea varieties [J]. Tea in Fujian, 2019, 41(3): 4−5. (in Chinese) doi: 10.3969/j.issn.1005-2291.2019.03.003
    [12] ZHENG X L, TIAN S P. Effect of oxalic acid on control of postharvest browning of litchi fruit [J]. Food Chemistry, 2006, 96(4): 519−523. doi: 10.1016/j.foodchem.2005.02.049
    [13] WANG L K, FENG Z X, WANG X, et al. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data [J]. Bioinformatics, 2010, 26(1): 136−138. doi: 10.1093/bioinformatics/btp612
    [14] CHEN C J, CHEN H, HE Y H, et al. TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface [J]. BioRxiv, 2018, 13: 1194−1202.
    [15] YAN F, ZHU Y C, ZHAO Y N, et al. De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes in Sophora alopecuroides [J]. BMC Genomics, 2020, 21(1): 423. doi: 10.1186/s12864-020-06823-4
    [16] 吴华玲, 乔小燕, 李家贤, 等. “红紫芽” 茶树新品系的生物学特性研究 [J]. 热带作物学报, 2011, 32(6):1009−1015. doi: 10.3969/j.issn.1000-2561.2011.06.005

    WU H L, QIAO X Y, LI J X, et al. Biological characters of new tea germplasms with reddishviolet shoots [J]. Chinese Journal of Tropical Crops, 2011, 32(6): 1009−1015. (in Chinese) doi: 10.3969/j.issn.1000-2561.2011.06.005
    [17] FREYRE R, UZDEVENES C, GU L W, et al. Genetics and anthocyanin analysis of flower color in Mexican Petunia [J]. Journal of the American Society for Horticultural Science, 2015, 140(1): 45−49. doi: 10.21273/JASHS.140.1.45
    [18] 蒋会兵, 夏丽飞, 田易萍, 等. 基于转录组测序的紫芽茶树花青素合成相关基因分析 [J]. 植物遗传资源学报, 2018, 19(5):967−978.

    JIANG H B, XIA L F, TIAN Y P, et al. Transcriptome analysis of anthocyanin synthesis related genes in purple bud tea plant [J]. Journal of Plant Genetic Resources, 2018, 19(5): 967−978. (in Chinese)
    [19] 周琼琼, 孙威江. 茶树芽叶紫化的生理生化分析及其关键酶基因的表达 [J]. 生物技术通报, 2015, 31(1):86−91.

    ZHOU Q Q, SUN W J. Physiological and biochemical analysis of young shoot purple-related and gene expression of key enzymes in tea plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2015, 31(1): 86−91. (in Chinese)
    [20] 周天山, 王新超, 余有本, 等. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析 [J]. 作物学报, 2016, 42(4):525−531. doi: 10.3724/SP.J.1006.2016.00525

    ZHOU T S, WANG X C, YU Y B, et al. Correlation analysis between total catechins(or anthocyanins) and expression levels of genes involved in flavonoids biosynthesis in tea plant with purple leaf [J]. Acta Agronomica Sinica, 2016, 42(4): 525−531. (in Chinese) doi: 10.3724/SP.J.1006.2016.00525
    [21] 范晶, 黄明远, 吴苗苗, 等. 山茶属三个F3H基因的分子特性、系统进化及蛋白结构差异分析 [J]. 基因组学与应用生物学, 2016, 35(5):1195−1205.

    FAN J, HUANG M Y, WU M M, et al. Comparison of molecular characteristics, phylogeny and structure of three Camellia F3H genes [J]. Genomics and Applied Biology, 2016, 35(5): 1195−1205. (in Chinese)
    [22] MEI Y, XIE H, LIU S R, et al. Metabolites and transcriptional profiling analysis reveal the molecular mechanisms of the anthocyanin metabolism in the "Zijuan" tea plant (Camellia sinensis var. assamica) [J]. Journal of Agricultural and Food Chemistry, 2021, 69(1): 414−427. doi: 10.1021/acs.jafc.0c06439
    [23] TIAN J, HAN Z Y, ZHANG J, et al. The balance of expression of dihydroflavonol 4-reductase and flavonol synthase regulates flavonoid biosynthesis and red foliage coloration in crabapples [J]. Scientific Reports, 2015, 5: 12228. doi: 10.1038/srep12228
    [24] 宋中邦, 李文正, 高玉龙, 等. 烟草FLS基因表达抑制对类黄酮代谢的影响 [J]. 基因组学与应用生物学, 2016, 35(12):3501−3506.

    SONG Z B, LI W Z, GAO Y L, et al. Suppression of tobacco FLS genes' expression and its effect on flavonoid metabolism [J]. Genomics and Applied Biology, 2016, 35(12): 3501−3506. (in Chinese)
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  109
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-11-10
  • 网络出版日期:  2024-05-17
  • 刊出日期:  2024-06-28

目录

    /

    返回文章
    返回