Transcriptome Analysis on Anthocyanin Synthesis-related Genes in Liupao Tea Plants
-
摘要:
目的 紫芽六堡茶(Camellia sinensis var. sinensis cv. Liupao)是六堡群体种茶树中芽叶呈紫色且富含花青素的特异品系,研究紫芽六堡茶花青素合成相关基因可为深入了解紫芽六堡茶花青素积累的分子机制奠定基础,为高花青素六堡茶树的分子育种提供遗传资源。 方法 利用盐酸乙醇分别提取紫芽和绿芽六堡茶芽中花青素,测定其含量;通过Illumina Hiseq 2500 高通量测序平台对紫芽和绿芽六堡茶进行转录组测序,分析花青素合成相关基因的表达水平,找出差异表达基因,进一步进行GO功能分析和KEGG富集分析;并通过荧光定量PCR对转录组测序结果进行验证。结果 紫芽六堡茶花青素含量是绿芽的7倍;转录组测序共获得 165570 条Unigene,平均长度1450 bp;对测序结果进行分析,筛选出与紫芽六堡茶花青素生物合成通路相关的基因243条,进一步筛选出43个差异显著表达基因,这些基因共编码14个关键酶,包括苯丙氨酸氨裂解酶(phenylalanine ammonialyase, PAL)、查尔酮合成酶(chalcone synthase, CHS)、查尔酮异构酶(chalcone isomerase, CHI)、肉桂酸4-羟化酶(cinnamate acid 4-hydroxylase, C4H)、花色素苷还原酶(anthocyanidin reductase, ANR)、4-香豆酸CoA连接酶(4-coumarate-Co A ligase, 4CL)、乙酰辅酶A羧化酶(acetyl-CoA carboxylase, ACC)、黄酮醇合成酶(flavonol synthase, FLS)、黄酮3′,5′-羟化酶(flavonoid-3′,5′-hydroxylase, F3'5'H)、黄酮3′-羟化酶(flavonoid 3'-hydroxylase, F3'H)、黄酮3-羟化酶(flavanone-3-hydroxylase, F3H)、二氢黄酮醇还原酶(dihydroflavonol 4-reductase, DFR)、花青素成合酶(anthocyanidin synthase, ANS)、无色花青素还原酶(leucoanthocyanidin reductase, LAR)。结论 编码花青素生物合成的14个关键酶基因中有34个基因在紫芽六堡茶中上调表达,推测这些基因在紫芽花青素积累中起重要作用。 Abstract:Objective Liupao Tea (Camellia sinensis var. sinensis cv. Liupao) was studied for the genes associated with anthocyanin synthesis for target breeding. Methods Anthocyanin were extracted with ethanol hydrochloride from Liupao Tea plants bearing purple or green buds. Transcriptome sequencing was performed using Illumina Hiseq 2500 high-throughput platform to identify differentially expressed genes, determine expression of the genes related to anthocyanin synthesis, and conduct GO and KEGG enrichment analyses on the extracts. The sequencing results were subsequently verified by fluorescence quantification PCR.Results The young leaves on the tea plants borne with purple buds contained sevenfold higher anthocyanin than those on the plants with green buds. The transcriptome of the genes of the purple buds had 165570 unigenes with an average length of1450 bp. Of them, 243 related to the anthocyanin biosynthesis pathway, and 43 significantly differentially expressed between the two types of plants. The 43 differentiated genes encoded 14 key enzymes, i.e., phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), cinnamate acid 4-hydroxylase (C4H), anthocyanidin reductase (ANR), 4-coumarate-CoA ligase (4CL), acetyl-CoA carboxylase (ACC), flavonol synthase (FLS), flavonoid-3′,5′-hydroxylase (F3′5′H), flavonoid 3′-hydroxylase (F3′H), flavanone-3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and leucoanthocyanidin reductase (LAR).Conclusion Thirty-four genes significantly upregulated in Liupao Tea plants with purple buds were found to be associated with 14 key enzymes encoding anthocyanin biosynthesis. They were speculated to play an important role in the bud color differentiation between the two varieties. -
Key words:
- Purple buds /
- Liupao Tea /
- anthocyanin /
- transcriptome /
- differentially expressed genes
-
图 6 紫芽vs绿芽差异基因表达量热图
G-1、G-2、G-3为紫芽的3个重复,F-1、F-2、F-3为绿芽的3个重复。颜色越红,表达量越高,颜色越蓝,表达量越低。
Figure 6. Heatmap of differential expressions of genes in two varieties of Liupao Tea plants
G-1, G-2, and G-3: 3 samples of tea plants with purple buds; F-1, F-2, and F-3: 3 samples of tea plants with green buds; deeper red color indicates higher expression; deeper blue, lower expression.
图 7 花青素生物合成差异基因GO富集分析
1~20分别为金属离子结合、催化活性、氧化还原酶活性、转移酶活性、作用于配体的氧化还原酶活性、铁离子结合、曲红素酸盐、连接酶活性、单加氧酶活性、柚皮素-查尔酮合酶活性、苯丙氨酸解氨酶活性、乙酰辅酶a羧化酶活性、分子内裂解酶活性、查尔酮异构酶活性、双加氧酶活性、类黄酮生物合成过程、生物合成过程、肉桂酸生物合成过程、生物合成过程、肉桂酸生物合成过程、L-苯丙氨酸分解代谢过程、脂肪酸生物合成。
Figure 7. GO-enrichment analysis on differential genes associated with anthocyanin biosynthesis
1–20 was metal ion binding, catalytic activity, oxidoreductase activity, transferase activity, oxidoreductase activity acting on paired donors, iron ion binding,heme binding, ligase activity, monooxygenase activity, naringenin-chalcone synthase activity, phenylalanine ammonia-lyase activity, acetyl-CoA carboxylase activity, intramolecular-lyase activity, chalcone isomerase activity, dioxygenase activity, flavonoid biosynthetic process, biosynthetic process, cinnamic acid biosynthetic process, L-phenylalanine catabolic process,fatty acid biosynthetic process, respectively.
图 8 花青素生物合成差异基因KEGG富集
1~12分别为类黄酮生物合成、苯丙氨酸代谢、苯丙素的生物合成、泛素和其他萜类醌的生物合成、丙酸代谢、黄酮和黄酮醇的生物合成、脂肪酸生物合成、类二苯乙烯生物合成、脂肪酸代谢、丙酮酸代谢、半胱氨酸和蛋氨酸的代谢、昼夜节律植物。
Figure 8. KEGG enrichment on differential genes associated with anthocyanin biosynthesis
1–12 was flavonoid biosynthesis, phenylalanine metabolism, phenylpropanoid biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, propanoate metabolism, flavone and flavonol biosynthesis, fatty acid biosynthesis, stilbenoid biosynthesis, fatty acid metabolism, pyruvate metabolism, cysteine and methionine metabolism, circadian rhythm – plant, respectively.
表 1 荧光定量 PCR 引物序列
Table 1. Primers for qRT-PCR
引物名称
Primer name基因ID
Gene ID引物序列(5′-3′)
Primer sequence(5′-3′)序列长度
Sequence length/bpPIP Unigene82719 F:TTGTGGTGCTGCTGTTGTCA;R:TGGCGGAGAAGACGGTGTA 158 psaG Unigene19457 F:CGAGCCAAAGAGTATGTGAGTC;R:AGTAAGCAACGATGTGTCCAAT 103 purH Unigene31003 F:GAAGCAGCCGACTGTTGGA;R:CCACCAGCATTAACCTCAGAGA 144 CYP75A Unigene14189 F:TGATAAGCCGAAGCCTTGTGT;R:CGATTGCGTGGATGGACT 112 CHI Unigene41427 F:ACAATGTCTCCGTCGCAGTCA ;R:AGCCGTGAACTTGATGAACTTG 161 PAL CL10001.Contig25 F:GCAAAGCCCAACCAAGTAGG;R:GCCGAGCAACACAACCAAG 114 4CL Unigene2852 F:TGCTGTTGTGCTCGCTGAG;R:AGTGACCACCATCGGATTCTTC 158 ANS Unigene69431 F:AACCGCAAGTACAAGAGCATTC;R:CTCCTCCTCCGTCACTGTCT 138 LAR CL6821.Contig1 F:ATGACTGTGTTGGAATCTGTGT;R:CTAGCTTCGGCGATGAACTG 92 CsEF CsEF1 F:TTGGACAAGCTCAAGGCTGAACG;R:ATGGCCAGGAGCATCAATGACAGT 109 表 2 转录组测序有效数据统计
Table 2. Statistics on effective data
样本
Sample过滤前的序列数
Raw reads /M过滤后的序列数
Clean reads/M过滤后的序列占比
Clean reads ratio/%过滤后的碱基数
Clean bases/GbQ20数量
Q20 number/MQ20占比
Q20 ratio/%Q30数量
Q30 number/MQ30占比
Q30 ratio/%紫芽G-1 43.82 42.2 96.31 6.33 42.43 96.83 40.26 91.88 紫芽G-2 43.82 42.42 96.79 6.36 42.52 97.03 40.45 92.31 紫芽G-3 43.82 42.41 96.79 6.36 42.5 96.99 40.41 92.22 绿芽F-1 45.57 43.59 95.66 6.54 44.17 96.94 42.01 92.19 绿芽F-2 43.82 42.61 97.23 6.39 42.50 96.98 40.41 92.24 绿芽F-3 43.82 42.54 97.08 6.38 42.46 96.89 40.32 92.02 表 3 紫芽六堡茶花青素合成相关的差异显著基因
Table 3. Significantly differential genes associated with anthocyanin synthesis
基因名称
Name基因 ID
Gene ID绿芽中相对表达量
Green bud expression紫芽中相对表达量
Purple bud expression差异倍数
Differential multiple表达调控
RegulatedPAL CL10001.Contig10 0.040 16.373 8.428 上调 Up PAL CL10001.Contig19 1.926 20.020 3.284 上调 Up PAL CL10001.Contig9 0.443 8.380 4.222 上调 Up CHS CL13438.Contig10 0.000 83.240 9.947 上调 Up CHS CL13438.Contig16 0.313 42.316 5.994 上调 Up CHS CL13438.Contig4 1.263 122.906 5.154 上调 Up CHS Unigene23474 0.576 31.160 5.285 上调 Up CHS Unigene9932 0.526 19.780 4.808 上调 Up CHI CL1850.Contig6 0.796 6.346 2.948 上调 Up CHI CL5568.Contig1 85.453 284.253 1.708 上调 Up CHI Unigene41427 14.090 76.673 2.341 上调 Up CHI Unigene72176 0.050 8.013 5.537 上调 Up DFR Unigene25358 1.156 0.053 −4.396 下调 Down DFR Unigene8872 0.883 0.080 −3.165 下调 Down DFR Unigene8644 0.000 1.800 7.766 上调 Up DFR CL13149.Contig6 0.030 1.043 5.484 上调 Up C4H CL1010.Contig15 1.133 5.286 2.164 上调 Up C4H CL10269.Contig2 0.000 12.236 7.711 上调 Up C4H CL5289.Contig2 158.473 444.453 1.463 上调 Up ANR CL1162.Contig11 0.033 31.566 9.650 上调 Up ANR CL1162.Contig14 8.700 422.806 5.531 上调 Up ANR CL1162.Contig2 0.070 23.650 7.396 上调 Up 4CL Unigene18597 0.676 22.903 4.901 上调 Up 4CL Unigene5041 1.440 54.046 5.109 上调 Up 4CL Unigene79704 13.510 37.350 1.440 上调 Up 4CL Unigene9176 0.186 82.623 8.500 上调 Up ACC CL10106.Contig13 0.606 10.120 3.698 上调 Up ACC Unigene6677 0.670 6.476 3.095 上调 Up ACC CL10106.Contig22 6.416 17.563 1.432 上调 Up F3'5'H Unigene14189 2.396 302.993 6.088 上调 Up LAR CL52.Contig1 2.650 0.000 −6.676 下调 Down LAR CL6821.Contig1 188.293 2.716 −6.078 下调 Down LAR Unigene12558 3.456 0.190 −3.935 下调 Down ANS CL9955.Contig1 0.040 2.073 4.915 上调 Up ANS Unigene16647 0.106 6.580 5.672 上调 Up ANS Unigene5088 0.330 2.420 2.666 上调 Up FLS Unigene62039 1.790 0.210 −3.455 下调 Down FLS Unigene16307 5.530 1.143 −2.245 下调 Down FLS CL4659.Contig3 5.803 0.410 −3.785 下调 Down FLS CL3149.Contig1 158.973 0.676 −7.731 下调 Down F3'H CL1322.Contig3 0.393 25.246 5.605 上调 Up F3H Unigene23406 220.476 558.353 1.301 上调 Up F3H Unigene45907 0.286 39.816 4.832 上调 Up -
[1] 刘富知, 黄建安, 付冬和, 等. 茶树上红紫色芽叶部分生化特性的研究 [J]. 湖南农业大学学报, 2000, 26(1):41−42,57.LIU F Z, HUANG J A, FU D H, et al. Biochemical properties of new shoots of tea trees [J]. Journal of Hunan Agricultural University, 2000, 26(1): 41−42,57. (in Chinese) [2] 张凯凯, 苏鸿锋, 林泳恩, 等. 高花青素茶呈色与花青素积累机制研究进展 [J]. 食品安全质量检测学报, 2022, 13(11):3585−3592. doi: 10.3969/j.issn.2095-0381.2022.11.spaqzljcjs202211025ZHANG K K, SU H F, LIN Y E, et al. Research progress on the mechanism of color generation and anthocyanin accumulation in anthocyanin-rich tea [J]. Journal of Food Safety & Quality, 2022, 13(11): 3585−3592. (in Chinese) doi: 10.3969/j.issn.2095-0381.2022.11.spaqzljcjs202211025 [3] LAI Y S, LI S, TANG Q, et al. The dark-purple tea cultivar ‘ziyan’ accumulates a large amount of delphinidin-related anthocyanins [J]. Journal of Agricultural and Food Chemistry, 2016, 64(13): 2719−2726. doi: 10.1021/acs.jafc.5b04036 [4] 解东超. 紫娟茶中花青素及其在加工过程中变化规律研究[D]. 北京: 中国农业科学院, 2017.XIE D C. Research on anthocyanins of Zijuan and their varying patterns during the process[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) [5] DA SILVA T B V, CASTILHO P A, SÁ-NAKANISHI A B, et al. The inhibitory action of purple tea on in vivo starch digestion compared to other Camellia sinensis teas[J]. Food Research International, 2021, 150(Pt A): 110781. [6] 王萌, 常格, 王琦, 等. 4种园林树木叶片秋季变色期的呈色机理 [J]. 林业与生态科学, 2020, 35(1):93−98.WANG M, CHANG G, WANG Q, et al. The leaf color mechanism of four tree species with red leaves in autumn color-changing period [J]. Forestry and Ecological Sciences, 2020, 35(1): 93−98. (in Chinese) [7] 夏溪, 龚睿, 张春英. 不同颜色锦绣杜鹃花瓣中花青素苷组成及呈色机制[J]. 江苏农业学报, 2022, 38(1): 207−213.XIA X, GONG R, ZHANG C Y. Anthocyanin composition and coloration mechanism in petals of Rhododendron pulchrum with different colors[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(1): 207−213. (in Chinese) [8] 李健. ‘紫娟’茶树紫叶花青素积累机理的转录组分析[D]. 福州: 福建农林大学, 2016.LI J. Transcriptome analysis reveals the accumulation mechanism of anthocyanins in ’zijuan’ tea [Camellia Sinensis Var. Asssamica (Masters) Kitamura] leaves[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese) [9] 向奕, 刘硕谦, 龚志华, 等. 茶树紫芽中花青素形成相关基因差异表达分析 [J]. 茶叶科学, 2018, 38(5):439−449. doi: 10.3969/j.issn.1000-369X.2018.05.001XIANG Y, LIU S Q, GONG Z H, et al. Differential expression analysis of genes related to anthocyanin biosynthesis in purple buds of tea plant(Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(5): 439−449. (in Chinese) doi: 10.3969/j.issn.1000-369X.2018.05.001 [10] 刘悦, 曲浩, 李友勇, 等. 红芽直立茶紫色叶形成机制的转录组分析 [J]. 茶叶通讯, 2019, 46(4):409−418. doi: 10.3969/j.issn.1009-525X.2019.04.006LIU Y, QU H, LI Y Y, et al. Transcriptome analysis of the formation mechanism of purple leaf in Camellia assamica cv. with erect red bud [J]. Journal of Tea Communication, 2019, 46(4): 409−418. (in Chinese) doi: 10.3969/j.issn.1009-525X.2019.04.006 [11] 许丽颖, 刘斗南, 刘月. 不同茶树品种叶片的花青素研究进展 [J]. 福建茶叶, 2019, 41(3):4−5. doi: 10.3969/j.issn.1005-2291.2019.03.003XU L Y, LIU D N, LIU Y. Research progress of anthocyanins in leaves of different tea varieties [J]. Tea in Fujian, 2019, 41(3): 4−5. (in Chinese) doi: 10.3969/j.issn.1005-2291.2019.03.003 [12] ZHENG X L, TIAN S P. Effect of oxalic acid on control of postharvest browning of litchi fruit [J]. Food Chemistry, 2006, 96(4): 519−523. doi: 10.1016/j.foodchem.2005.02.049 [13] WANG L K, FENG Z X, WANG X, et al. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data [J]. Bioinformatics, 2010, 26(1): 136−138. doi: 10.1093/bioinformatics/btp612 [14] CHEN C J, CHEN H, HE Y H, et al. TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface [J]. BioRxiv, 2018, 13: 1194−1202. [15] YAN F, ZHU Y C, ZHAO Y N, et al. De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes in Sophora alopecuroides [J]. BMC Genomics, 2020, 21(1): 423. doi: 10.1186/s12864-020-06823-4 [16] 吴华玲, 乔小燕, 李家贤, 等. “红紫芽” 茶树新品系的生物学特性研究 [J]. 热带作物学报, 2011, 32(6):1009−1015. doi: 10.3969/j.issn.1000-2561.2011.06.005WU H L, QIAO X Y, LI J X, et al. Biological characters of new tea germplasms with reddishviolet shoots [J]. Chinese Journal of Tropical Crops, 2011, 32(6): 1009−1015. (in Chinese) doi: 10.3969/j.issn.1000-2561.2011.06.005 [17] FREYRE R, UZDEVENES C, GU L W, et al. Genetics and anthocyanin analysis of flower color in Mexican Petunia [J]. Journal of the American Society for Horticultural Science, 2015, 140(1): 45−49. doi: 10.21273/JASHS.140.1.45 [18] 蒋会兵, 夏丽飞, 田易萍, 等. 基于转录组测序的紫芽茶树花青素合成相关基因分析 [J]. 植物遗传资源学报, 2018, 19(5):967−978.JIANG H B, XIA L F, TIAN Y P, et al. Transcriptome analysis of anthocyanin synthesis related genes in purple bud tea plant [J]. Journal of Plant Genetic Resources, 2018, 19(5): 967−978. (in Chinese) [19] 周琼琼, 孙威江. 茶树芽叶紫化的生理生化分析及其关键酶基因的表达 [J]. 生物技术通报, 2015, 31(1):86−91.ZHOU Q Q, SUN W J. Physiological and biochemical analysis of young shoot purple-related and gene expression of key enzymes in tea plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2015, 31(1): 86−91. (in Chinese) [20] 周天山, 王新超, 余有本, 等. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析 [J]. 作物学报, 2016, 42(4):525−531. doi: 10.3724/SP.J.1006.2016.00525ZHOU T S, WANG X C, YU Y B, et al. Correlation analysis between total catechins(or anthocyanins) and expression levels of genes involved in flavonoids biosynthesis in tea plant with purple leaf [J]. Acta Agronomica Sinica, 2016, 42(4): 525−531. (in Chinese) doi: 10.3724/SP.J.1006.2016.00525 [21] 范晶, 黄明远, 吴苗苗, 等. 山茶属三个F3H基因的分子特性、系统进化及蛋白结构差异分析 [J]. 基因组学与应用生物学, 2016, 35(5):1195−1205.FAN J, HUANG M Y, WU M M, et al. Comparison of molecular characteristics, phylogeny and structure of three Camellia F3H genes [J]. Genomics and Applied Biology, 2016, 35(5): 1195−1205. (in Chinese) [22] MEI Y, XIE H, LIU S R, et al. Metabolites and transcriptional profiling analysis reveal the molecular mechanisms of the anthocyanin metabolism in the "Zijuan" tea plant (Camellia sinensis var. assamica) [J]. Journal of Agricultural and Food Chemistry, 2021, 69(1): 414−427. doi: 10.1021/acs.jafc.0c06439 [23] TIAN J, HAN Z Y, ZHANG J, et al. The balance of expression of dihydroflavonol 4-reductase and flavonol synthase regulates flavonoid biosynthesis and red foliage coloration in crabapples [J]. Scientific Reports, 2015, 5: 12228. doi: 10.1038/srep12228 [24] 宋中邦, 李文正, 高玉龙, 等. 烟草FLS基因表达抑制对类黄酮代谢的影响 [J]. 基因组学与应用生物学, 2016, 35(12):3501−3506.SONG Z B, LI W Z, GAO Y L, et al. Suppression of tobacco FLS genes' expression and its effect on flavonoid metabolism [J]. Genomics and Applied Biology, 2016, 35(12): 3501−3506. (in Chinese)