SNP Markers Development and Genetic Relationship Identification of Germplasm Resources of Canarium album Based on SLAF-Seq Technology
-
摘要:
目的 开发橄榄SNP标记并分析其种质资源遗传多样性,为橄榄种质资源保护和利用提供依据。 方法 基于SLAF-Seq技术进行橄榄SNP标记开发,同时采用系统进化分析、群体聚类分析和主成分分析等研究了橄榄种质资源遗传结构和遗传多样性。 结果 基于SLAF-Seq技术共挖掘到506 701个SLAF标签,其中多态性SLAF标签27 108个,开发获得361 386个群体SNP标记;基于SNP标记,利用系统进化树和群体聚类分析可分别将橄榄种质资源分为3和6个类群,整体Nei多样性指数和Shanon-Wiener指数分别为0.321和0.472。两种分类方法分析结果均发现,不同地区之间的橄榄种质资源并未严格按照地域分布归类。 结论 橄榄种质资源遗传多样性相对丰富,且不同地域间存在种质资源交流,而采用SNP标记可有效鉴定橄榄种质资源。 Abstract:Objective SNP markers development and genetic diversity analysis of Canarium album were perfomed to facilitate the protection and utilization of germplasm resources of C. album. Method SNP markers of C. album were developed based on SLAF-Seq technology, and the genetic structure and genetic diversity were studied by phylogenetic analysis, population cluster analysis and principal component analysis. Result A total of 506 701 SLAF loci were mined, including 27 108 polymorphic SLAF loci, and 361 386 SNP markers were developed. Based on these SNP markers, germplasm resources of C. album were respectively divided into 3 and 6 groups by phylogenetic tree and population cluster analysis. The overall Nei diversity index and Shanon Wiener index were 0.321 and 0.472, respectively. The results of two classification methods showed that germplasm resources of C. album from different regions were not classified strictly according to regional distribution. Conclusion The genetic diversity of germplasm resources of C. album had great genetic diversity which were exchange frequently among different regions, and the developed SNP markers of C. album could effectively identify the germplasm resources. -
Key words:
- Canarium album /
- germplasm resource /
- SNP marker /
- genetic structure /
- genetic diversity
-
表 1 供试橄榄种质资源
Table 1. Germplasm resources of C. album used in this experiment
编号
Number名称
Germplasm
name来源地
Source经纬度
Longitude and
latitude简写名
Abbreviated
name1 葡萄 福建福安 119°38′E, 27°08′N PT 2 大目埕橄榄王 福建闽侯 118°59′E, 26°12′N DMC 3 七粒尺 福建闽侯 119°00′E, 26°10′N QLC 4 灵峰 福建闽侯 118°97′E, 26°21′N LF 5 福榄1号 福建闽侯 118°97′E, 26°21′N FL1 6 清榄1号 福建闽清 118°54′E, 26°13′N QL1 7 闽清2号 福建闽清 118°89′E, 26°24′N MQ2 8 牛榄2号 广西浦北 109°33′E, 22°19′N NL2 9 合江三白圆 四川合江 105°53′E, 28°46′N HJSBY 10 平阳3号 浙江平阳 120°30′E, 27°37′N PY3 11 瑞安2号 浙江瑞安 120°35′E, 27°53′N RA2 12 瑞安3号 浙江瑞安 120°35′E, 27°53′N RA3 13 棱尖 广东饶平 116°83′E, 23°99′N LJ 14 乌榄 广东广州 113°22′E, 23°09′N WL 表 2 测序数据统计
Table 2. Summary of sequencing data
样本名称
Sample ID全部片段数量
Number of total readsGC含量百分比
GC percentage/%Q30百分比
Q30 percentage/%DMC 749 838 40.43 93.28 FL1 894 002 41.03 93.43 HJSBY 7 541 767 37.41 93.43 LF 559 479 39.21 93.54 LJ 1 012 589 38.36 93.61 MQ2 1 139 514 40.38 93.51 NL2 1 071 660 38.80 93.62 PT 876 458 41.65 93.48 PY3 964 858 39.20 93.32 QL1 1 996 699 40.74 93.44 QLC 813 057 41.57 93.61 RA2 1 128 676 39.18 93.76 RA3 873 826 42.05 93.67 WL 901 408 37.88 93.29 表 3 不同样本中SNP位点数量
Table 3. Number of SNP loci in different samples
样本名称
Sample IDSNP数量
SNP number完整度
Hetloci ratio/%杂合度
Integrity ratio/%DMC 227 472 13.96 62.94 FL1 239 971 14.73 66.40 HJSBY 297 219 21.86 82.24 LF 209 271 12.95 57.90 LJ 255 598 17.94 70.72 MQ2 249 658 14.61 69.08 NL2 256 355 17.77 70.93 PT 231 235 14.92 63.98 PY3 239 403 15.00 66.24 QL1 290 076 30.22 80.26 QLC 233 083 13.59 64.49 RA2 254 930 16.64 70.54 RA3 236 723 15.11 65.50 WL 165 152 11.72 45.69 -
[1] XIANG Z B, WU X L, LIU X Y. Chemical composition and antioxidant activity of petroleum ether extract of Canarium album [J]. Pharmaceutical Chemistry Journal, 2017, 51(7): 606−611. doi: 10.1007/s11094-017-1661-9 [2] DUAN W J, TAN S Y, CHEN J, et al. Isolation of anti-HIV components from Canarium album fruits by high-speed counter-current chromatography [J]. Analytical Letters, 2013, 46(7): 1057−1068. doi: 10.1080/00032719.2012.749486 [3] JIA Y L, ZHENG J, YU F, et al. Anti-tyrosinase kinetics and antibacterial process of caffeic acid N-nonyl ester in Chinese olive (Canarium album) postharvest [J]. International Journal of Biological Macromolecules, 2016, 91: 486−495. doi: 10.1016/j.ijbiomac.2016.05.098 [4] LIU Q P, ZHOU M L, ZHENG M, et al. Canarium album extract restrains lipid excessive accumulation in hepatocarcinoma cells [J]. International Journal of Clinical and Experimental Medicine, 2016, 9(9): 17509−17518. [5] 赖瑞联, 陈瑾, 韦晓霞, 等. 中国橄榄研究40年 [J]. 热带作物学报, 2020, 41(10):2045−2054. doi: 10.3969/j.issn.1000-2561.2020.10.011LAI R L, CHEN J, WEI X X, et al. Research of Chinese olive in the past 40 years [J]. Chinese Journal of Tropical Crops, 2020, 41(10): 2045−2054. (in Chinese) doi: 10.3969/j.issn.1000-2561.2020.10.011 [6] 杨培奎. 粤东地区橄榄种质资源遗传多样性ISSR分析及核心种质初步构建[D]. 汕头: 汕头大学, 2010.YANG P K. Analysis of genetic diversity of Canarium album L. germplasm resources from East Guangdong Province using ISSR and construction of core collection[D]. Shantou: Shantou University, 2010. (in Chinese) [7] 刘天亮. 福建省橄榄(Canavium album Raeusch)种质资源的ISSR分析[D]. 福州: 福建农林大学, 2010.LIU T L. ISSR analysis of germplasm resources of Fujian Canavium album Raeusch[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. (in Chinese) [8] 赖瑞联, 陈瑾, 冯新, 等. 橄榄ISSR和RAPD遗传多样性分析和核心种质构建 [J]. 热带亚热带植物学报, 2022, 30(1):41−53. doi: 10.11926/jtsb.4437LAI R L, CHEN J, FENG X, et al. ISSR and RAPD genetic diversity analysis and core germplasms construction of Canarium album [J]. Journal of Tropical and Subtropical Botany, 2022, 30(1): 41−53. (in Chinese) doi: 10.11926/jtsb.4437 [9] 聂珍素. 福建橄榄(Canarium album L. )资源的RAPD分析[D]. 福州: 福建农林大学, 2005.NIE Z S. RAPD analysis of album(Canarium album) genetic resources in Fujian Province[D]. Fuzhou: Fujian Agriculture and Forestry University, 2005. (in Chinese) [10] MEI Z L, ZHANG X Q, LIU X Y, et al. Genetic analysis of Canarium album in different areas of China by improved RAPD and ISSR [J]. Comptes Rendus Biologies, 2017, 340(11/12): 558−564. [11] MEI Z Q. Improved RAPD analysis of Canarium album (Lour. ) raeusch from Sichuan Province along Yangtze River in China [J]. Annual Research & Review in Biology, 2014, 4: 51−60. [12] CHENG J L, YIN Z C, MEI Z Q, et al. Development and significance of SCAR marker QG12-5 for Canarium album (Lour. ) Raeusch by molecular cloning from improved RAPD amplification [J]. Genetics and Molecular Research, 2016, 15(3): gmr8347. [13] 张小红, 赵依杰, 林航. 基于SRAP技术的甜橄榄种质资源遗传多样性分析 [J]. 中国南方果树, 2017, 46(6):53−56.ZHANG X H, ZHAO Y J, LIN H. Genetic diversity analysis of sweet olive germplasm resources based on SRAP technology [J]. South China Fruits, 2017, 46(6): 53−56. (in Chinese) [14] 张平湖, 刘冠明. 橄榄SRAP-PCR体系的建立和优化 [J]. 中国农学通报, 2010, 26(15):86−88.ZHANG P H, LIU G M. Establishment and optimization of SRAP-PCR system in Canarium album reausch [J]. Chinese Agricultural Science Bulletin, 2010, 26(15): 86−88. (in Chinese) [15] 王燕平, 陈勤, 周志钦, 等. 橄榄基因组AFLP扩增体系的优化 [J]. 果树学报, 2012, 29(3):505−511.WANG Y P, CHEN Q, ZHOU Z Q, et al. Optimization of AFLP reaction system in Canarium album [J]. Journal of Fruit Science, 2012, 29(3): 505−511. (in Chinese) [16] 苏睿, 林峻, 陈鲤群, 等. 高通量自动化SNP检测技术研究进展 [J]. 中国细胞生物学学报, 2019, 41(7):1412−1422. doi: 10.11844/cjcb.2019.07.0022SU R, LIN J, CHEN L Q, et al. Research progress on high-throughput automated SNP detection technology [J]. Chinese Journal of Cell Biology, 2019, 41(7): 1412−1422. (in Chinese) doi: 10.11844/cjcb.2019.07.0022 [17] ZHU Z S, SUN B M, LEI J J. Specific-locus amplified fragment sequencing (SLAF-seq) as high-throughput SNP genotyping methods [J]. Methods in Molecular Biology, 2021, 2264: 75−87. [18] 赖瑞联, 徐洋, 赖恭梯, 等. 山枇杷基因组DNA的提取及自然群体内ISSR遗传多样性分析 [J]. 森林与环境学报, 2015, 35(1):53−59.LAI R L, XU Y, LAI G T, et al. Extraction of genomic DNA and analysis of genetic diversity of the natural population by ISSR in Garcinia multiflora [J]. Journal of Forest and Environment, 2015, 35(1): 53−59. (in Chinese) [19] SUN X W, LIU D Y, ZHANG X F, et al. SLAF-seq: An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing [J]. PLoS One, 2013, 8(3): e58700. doi: 10.1371/journal.pone.0058700 [20] XU Q, CHEN L L, RUAN X A, et al. The draft genome of sweet orange (Citrus sinensis) [J]. Nature Genetics, 2013, 45: 59−66. doi: 10.1038/ng.2472 [21] KOZICH J J, WESTCOTT S L, BAXTER N T, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform [J]. Applied and Environmental Microbiology, 2013, 79(17): 5112−5120. doi: 10.1128/AEM.01043-13 [22] TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology and Evolution, 2011, 28(10): 2731−2739. doi: 10.1093/molbev/msr121 [23] ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals [J]. Genome Research, 2009, 19(9): 1655−1664. doi: 10.1101/gr.094052.109 [24] 赵亚琴, 樊丛照, 张际昭, 等. 基于简化基因组技术的啤酒花栽培种和野生种SNP位点开发及遗传结构分析 [J]. 中草药, 2021, 52(20):6365−6372. doi: 10.7501/j.issn.0253-2670.2021.20.027ZHAO Y Q, FAN C Z, ZHANG J Z, et al. SNP loci development and genetic structure of cultivated and wild individuals of Humulus lupulus using SLAF-seq [J]. Chinese Traditional and Herbal Drugs, 2021, 52(20): 6365−6372. (in Chinese) doi: 10.7501/j.issn.0253-2670.2021.20.027 [25] 田倩, 刘双委, 钮世辉, 等. 基于SLAF-seq技术的白皮松SNP分子标记开发 [J]. 北京林业大学学报, 2021, 43(8):1−8. doi: 10.12171/j.1000-1522.20200211TIAN Q, LIU S W, NIU S H, et al. Development of SNP molecular markers of Pinus bungeana based on SLAF-seq technology [J]. Journal of Beijing Forestry University, 2021, 43(8): 1−8. (in Chinese) doi: 10.12171/j.1000-1522.20200211 [26] CHEN Z Y, HE Y C, IQBAL Y, et al. Investigation of genetic relationships within three Miscanthus species using SNP markers identified with SLAF-seq [J]. BMC Genomics, 2022, 23(1): 43. doi: 10.1186/s12864-021-08277-8 [27] WEI Q Z, WANG W H, HU T H, et al. Construction of a SNP-based genetic map using SLAF-seq and QTL analysis of morphological traits in eggplant [J]. Frontiers in Genetics, 2020, 11: 178. doi: 10.3389/fgene.2020.00178 [28] WANG R J, GAO X F, YANG J, et al. Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq [J]. Journal of Agricultural and Food Chemistry, 2019, 67(37): 10380−10391. doi: 10.1021/acs.jafc.9b03330 [29] 樊晓静, 于文涛, 蔡春平, 等. 利用SNP标记构建茶树品种资源分子身份证 [J]. 中国农业科学, 2021, 54(8):1751−1772. doi: 10.3864/j.issn.0578-1752.2021.08.014FAN X J, YU W T, CAI C P, et al. Construction of molecular ID for tea cultivars by using of single-nucleotide polymorphism(SNP) markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751−1772. (in Chinese) doi: 10.3864/j.issn.0578-1752.2021.08.014 [30] 魏中艳, 李慧慧, 李骏, 等. 应用SNP精准鉴定大豆种质及构建可扫描身份证 [J]. 作物学报, 2018, 44(3):315−323. doi: 10.3724/SP.J.1006.2018.00315WEI Z Y, LI H H, LI J, et al. Accurate identification of varieties by nucleotide polymorphisms and establishment of scannable variety IDs for soybean germplasm [J]. Acta Agronomica Sinica, 2018, 44(3): 315−323. (in Chinese) doi: 10.3724/SP.J.1006.2018.00315