Somatic Incompatibility and Genetic Differences among Strains of Ganoderma sinense
-
摘要:
目的 评价不同紫芝(Ganoderma sinense)菌株间体细胞不亲和反应与遗传差异的关系,为应用体细胞不亲和性评价紫芝菌株间的遗传差异提供依据。 方法 以7个不同交配基因型的紫芝单核体为亲本,应用单向或者双向核迁移技术构建双核体菌株;通过在PDA培养基配对检测双核体菌株间的体细胞不亲和性,并采用ISSR、RAPD和SRAP 3种分子标记综合分析双核体菌株间的遗传差异。 结果 构建了5类遗传背景清晰的不同双核体菌株11个,它们之间的体细胞不亲性反应分为亲和、不亲和,其中不亲和反应出现隔离区、隔离区带线状和类似墙式结构的3种类型;3种分子标记综合分析显示,11个菌株间的遗传相似系数0.29~0.97,UPMGA聚类树状图能很好地展示11个双核体菌株间的遗传差异,并与亲本来源相一致。 结论 紫芝菌株间的体细胞不亲性反应主要受细胞核的影响,而细胞质的影响极小,并且紫芝菌株间的体细胞不亲性反应类型与菌株间的遗传差异相对应,在以后的紫芝种质资源遗传差异评价中,可应用操作简便的体细胞不亲和性进行初步分析。 Abstract:Objective Somatic incompatibility (SI) and genetic differences among Ganoderma sinense strains were studied. Method DikaryonG. sinense strains were generated from 7 monokaryon parents by uni- or bi-directional nuclear migration. On a PDA medium, SI between the dikaryon strains was tested, and genetic differentiations examined using ISSR, RAPD, and SRAP molecular markers. Result Eleven dikaron strains of 5 distinctive genetic types showing a gap, a gap with line, or a wall-like SI were obtained. The combined genetic similarity coefficients of the ISSR, RAPD, and SRAP molecular markers on the strains ranged from 0.29 to 0.97. The UPMGA clustering of the strains corresponded to that of the parents. Conclusion The SI among the G. sinense strains were mainly associated with the nucleus rather than the cytoplasm. Since the SI types largely paralleled the genetic differences of the dikaron strains, SI determination could be conveniently applied to preliminarily study the genetics of a G. sinense strain. -
Key words:
- antagonism /
- genetic relationship /
- molecular marker
-
图 1 紫芝双核体在PDA培养基上的SI反应
F:正面;B:背面。异核体的配对类别分为,Ⅰ:同核异质体;Ⅱ:细胞质和一个核相同,另一个核不同;Ⅲ:细胞质相同,细胞核不同;Ⅳ:一个核相同,另一个核与细胞质都不同;Ⅴ:细胞质和细胞核均不同。CK代表对照组。
Figure 1. SI reactions of heterokaryotic G. sinense colonies on PDA
F: front; B: back. The five pairing types of heterokaryons, Ⅰ: same dikaryon in different FP; Ⅱ: one same monokaryon with one different monokaryon in the same FP; Ⅲ: different dikaryon in the same FP; Ⅳ: one same monokaryon with one different monokaryon in different FP; Ⅴ: different dikaryon in different FP. Control check(CK).
表 1 引物序列
Table 1. Sequences of primers for molecular markers
分子标记
Molecular marker引物
Primer序列(5′-3′)
Sequences分子标记
Molecular marker引物
Primer序列(5′-3′)
SequencesISSR ISSR6 DHB (CGA)5 SRAP ME4 TGAGTCCAAACCGGACC ISSR ISSR17 (TG)8RC SRAP ME5 TGAGTCCAAACCGGAAG ISSR ISSR18 VHV (GT)8 SRAP ME6 TGAGTCCAAACCGGTAG RAPD S17 AGGGAACGAG SRAP EM8 GACTGCGTACGAATTAGC RAPD S18 CCACAGCAGT SRAP EM13 GACTGCGTACGAATTGGT RAPD S367 AGCGAGCAAG SRAP EM14 GACTGCGTACGAATTCAG SRAP ME3 TGAGTCCAAACCGGAAT SRAP EM17 GACTGCGTACGAATTCCA ISSR引物中的单字母简写代表多碱基混合位点。位置:D= (A, G, T), H= (A, C, T), B= (C, G, T),R= (A, G),V= (A, C, G)。
Single letter abbreviations of ISSR primers for mixed base. Positions: D= (A, G, T), H= (A, C, T), B= (C, G, T), R= (A, G), V= (A, C, G).表 2 测试菌株信息
Table 2. Information on tested strains
菌株
Strain亲本和交配型
Parents and mating types菌株
Strain亲本和交配型
Parent and mating typeSh2 G.s0007-31FP A1B7、G.s0011-16 A3B3 Sh13 G.s0007-31 A1B7、G.s0011-3 FP A2B2 Sh3 G.s0011-16 FP A3B3、G.s0012-28 A5B5 Sh14 G.s0007-31 FP A1B7、G.s0012-26 A4B4 Sh4 G.s0011-16 A3B3、G.s0012-28 FP A5B5 Sh15 G.s0007-31 A1B7、G.s0012-26 FP A4B4 Sh9 G.s0004-11 A1B1、G.s0011-16 FP A3B3 Sh21 G.s0011-3 A2B2、G.s0012-28 FP A5B5 Sh10 G.s0004-11 FP A1B1、G.s0011-16 A3B3 Sh24 G.s0004-11 A1B1、G.s0014-36 FP A7B7 Sh12 G.s0007-31 FP A1B7、G.s0011-3 A2B2 FP代表母本。
FP:female parent.表 3 测试菌株的体细胞不和性与遗传关系
Table 3. Relationships between SI and genetic differences among strains
异核体类别
Type of heterokaryon配对
Pairing拮抗信息
Information of antagonism遗传相似系数
Genetic similarity coefficientⅠ 同核异质体
Same dikaryon in different FPSh3×Sh4 - 0.97 Sh12×Sh13 - 0.97 Sh14×Sh15 - 0.95 Ⅱ 细胞质和一个核相同,另一个核不同
one same monokaryon with one different monokaryon in the same FPSh2×Sh14 G+ 0.66 Sh2×Sh12 G+ 0.74 Sh3×Sh9 GL++ 0.66 Ⅲ 细胞质相同,细胞核不同
Different dikaryon in the same FPSh4×Sh15 G+++ 0.46 Sh3×Sh13 G+++ 0.63 Sh9×Sh13 G++ 0.57 Ⅳ 一个核相同,另一个核与细胞质都不同
one same monokaryon with one different monokaryon in different FPSh3×Sh10 GL++ 0.69 Sh2×Sh15 G+ 0.66 Sh3×Sh2 W-l S 0.54 Ⅴ 细胞质和细胞核均不同
Different dikaryon in different FPSh2×Sh21 G++ 0.66 Sh3×Sh14 G+++ 0.49 Sh14×Sh24 G++++ 0.29 FP代表母本;SI反应分为(1)无拮抗-,(2)隔离型G,和(3)隔离型带线状GL和(4)菌丝墙式结构W-l S;“+”表示弱拮抗,“++”中等拮抗,“+++”强拮抗,“++++”非常强拮抗。
FP: female parent; 4 types of SI including(1)-: no antagonism; (2)G: gap; (3)GL: gap with line; and(4) W-1 S: hyphal wall-like structure; +: slight reaction; ++: moderate reaction; +++: strong reaction;++++: extremely strong reaction. -
[1] 黄年来, 林志彬, 陈国良, 等. 中国食药用菌学[M]. 上海: 上海科学技术文献出版社, 2010. [2] 刘新锐, 王圣铕, 谢宝贵, 等. 紫芝不亲和性因子分析[J]. 菌物学报, 2014, 33(2): 464-468.LIU X R, WANG S Y, XIE B G, et al. Incompatibility factors of Ganoderma sinense[J]. Mycosystema, 2014, 33(2): 464-468. (in Chinese) [3] TENG L M, WANG C, CUI B K, et al. Lanostane triterpenoids from mycelia-associated Ganoderma sinense and their anti-inflammatory activity [J]. Phytochemistry, 2023, 215: 113870. doi: 10.1016/j.phytochem.2023.113870 [4] GAO S Y, ZHANG P, ZHANG C Y, et al. Meroterpenoids from Ganoderma sinense protect hepatocytes and cardiomyocytes from oxidative stress induced injuries [J]. Fitoterapia, 2018, 131: 73−79. doi: 10.1016/j.fitote.2018.10.009 [5] WU N, PENG B, LI T, et al. Rapid simultaneous determination of four ganoderic acids in Ganoderma (chinese Name: Lingzhi) by direct infusion–multiple reaction monitoring cubed [J]. Journal of Analysis and Testing, 2024, 8(1): 52−62. doi: 10.1007/s41664-023-00271-1 [6] MEI R Q, ZUO F J, DUAN X Y, et al. Ergosterols from Ganoderma sinense and their anti-inflammatory activities by inhibiting NO production [J]. Phytochemistry Letters, 2019, 32: 177−180. doi: 10.1016/j.phytol.2019.06.006 [7] JIANG Y F, CHANG Y J, LIU Y, et al. Overview of Ganoderma sinense polysaccharide-an adjunctive drug used during concurrent Chemo/Radiation therapy for cancer treatment in China [J]. Biomedicine & Pharmacotherapy, 2017, 96: 865−870. [8] HAN W, CHEN H J, ZHOU L, et al. Polysaccharides from Ganoderma Sinense - rice bran fermentation products and their anti-tumor activities on non-small-cell lung cancer [J]. BMC Complementary Medicine and Therapies, 2021, 21(1): 169. doi: 10.1186/s12906-021-03346-7 [9] LIND M, STENLID J, OLSON A. Genetics and QTL mapping of somatic incompatibility and intraspecific interactions in the basidiomycete Heterobasidion annosum s. l[J]. Fungal Genetics and Biology: FG & B, 2007, 44(12): 1242−1251. [10] MARCAIS B, CAËL O, DELATOUR C. Genetics of somatic incompatibility in Collybia fusipes [J]. Mycological Research, 2000, 104(3): 304−310. doi: 10.1017/S0953756299001069 [11] 唐传红, 张劲松, 陈明杰, 等. 利用拮抗试验和RAPD对灵芝属菌株进行分类研究 [J]. 微生物学通报, 2005, 32(5):72−76. doi: 10.3969/j.issn.0253-2654.2005.05.015TANG C H, ZHANG J S, CHEN M J, et al. Study on classification of strains of Ganoderma by anatagonistic effect and rapd [J]. Microbiology, 2005, 32(5): 72−76. (in Chinese) doi: 10.3969/j.issn.0253-2654.2005.05.015 [12] 李黎. 中国木耳栽培种质资源的遗传多样性研究[D]. 武汉: 华中农业大学, 2011.LI L. Studies on Genetic Diversity of Auricularia Auricula-judae Cultivated Germplasm Resources in China[D]. Wuhan: Huazhong Agricultural University, 2011. (in Chinese) [13] 张瑞颖. 香菇菌株多相鉴定鉴别技术研究[D]. 北京: 中国农业大学, 2004.ZHANG R Y. Study on Polyphasic Strain-typing Technique of Lentinula Edodes[D]. Beijing: China Agricultural University, 2004. (in Chinese) [14] 刘靖宇, 宋秀高, 叶夏, 等. 香菇菌株遗传多样性ISSR、RAPD和SRAP综合分析 [J]. 食用菌学报, 2011, 18(3):1−8. doi: 10.3969/j.issn.1005-9873.2011.03.001LIU J Y, SONG X G, YE X, et al. Differentiation of Lentinula edodes Strains Using ISSR, RAPD and SRAP markers [J]. Acta Edulis Fungi, 2011, 18(3): 1−8. (in Chinese) doi: 10.3969/j.issn.1005-9873.2011.03.001 [15] 徐珍, 章炉军, 尚晓冬, 等. 金针菇品种DUS测试性状的分级与评价 [J]. 菌物学报, 2019, 38(5):658−668.XU Z, ZHANG L J, SHANG X D, et al. Gradation and evaluation for Flammulina filiformis DUS testing traits [J]. Mycosystema, 2019, 38(5): 658−668. (in Chinese) [16] 刘靖宇, 刘新锐, 邓优锦, 等. 双向核迁移在香菇遗传和育种中的应用研究 [J]. 菌物学报, 2011, 30(5):774−781.LIU J Y, LIU X R, DENG Y J, et al. The application of the ‘bidirectional haploid nuclei migration’ in breeding and genetics of Lentinula edodes [J]. Mycosystema, 2011, 30(5): 774−781. (in Chinese) [17] CATEN C E. Vegetative incompatibility and cytoplasmic infection in fungi [J]. Journal of General Microbiology, 1972, 72(2): 221−229. doi: 10.1099/00221287-72-2-221 [18] WORRALL J J. Somatic incompatibility in basidiomycetes [J]. Mycologia, 1997, 89(1): 24−36. doi: 10.1080/00275514.1997.12026751 [19] GIOVANNETTI M, SBRANA C, STRANI P, et al. Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis [J]. Applied and Environmental Microbiology, 2003, 69(1): 616−624. doi: 10.1128/AEM.69.1.616-624.2003 [20] MAY G. Somatic incompatibility and individualism in the coprophilous Basidiomycete, Coprinus cinereus [J]. Transactions of the British Mycological Society, 1988, 91(3): 443−451. doi: 10.1016/S0007-1536(88)80121-9 [21] HANSEN E M, STENLID J, JOHANSSON M. Genetic control of somatic incompatibility in the root-rotting basidiomycete Heterobasidion annosum [J]. Mycological Research, 1993, 97(10): 1229−1233. doi: 10.1016/S0953-7562(09)81290-2