• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

艾GRF基因家族的鉴定与表达分析

郭晨宁 李晶晶 杨晶凡 刘俊 杨灏 马蕊 陈随清 练从龙

郭晨宁,李晶晶,杨晶凡,等. 艾GRF基因家族的鉴定与表达分析 [J]. 福建农业学报,2024,39(5):540−549 doi: 10.19303/j.issn.1008-0384.2024.05.005
引用本文: 郭晨宁,李晶晶,杨晶凡,等. 艾GRF基因家族的鉴定与表达分析 [J]. 福建农业学报,2024,39(5):540−549 doi: 10.19303/j.issn.1008-0384.2024.05.005
GUO C N, LI J J, YANG J F, et al. Identification and Expressions of GRF Genes in Artemisia argyi [J]. Fujian Journal of Agricultural Sciences,2024,39(5):540−549 doi: 10.19303/j.issn.1008-0384.2024.05.005
Citation: GUO C N, LI J J, YANG J F, et al. Identification and Expressions of GRF Genes in Artemisia argyi [J]. Fujian Journal of Agricultural Sciences,2024,39(5):540−549 doi: 10.19303/j.issn.1008-0384.2024.05.005

艾GRF基因家族的鉴定与表达分析

doi: 10.19303/j.issn.1008-0384.2024.05.005
基金项目: 河南省高等学校重点科研项目(22A360012);河南省中药材产业技术体系建设专项(豫科项〔2022〕30号);国家自然科学基金项目(82204551)
详细信息
    作者简介:

    郭晨宁(1999 —),女,硕士研究生,主要从事药用植物分子生物学研究,E-mail:gcning6850@163.com

    通讯作者:

    练从龙(1988 —),男,博士,讲师,主要从事药用植物生理生态与分子生物学研究,E-mail:lian1988@hactcm.edu.cn

  • 中图分类号: R286

Identification and Expressions of GRF Genes in Artemisia argyi

  • 摘要:   目的  生长调节因子(growth-regulating factors, GRF)是植物的一种特有蛋白,探明艾(Artemisia argyi)GRF基因家族的生物学特性,为艾的生长发育和逆境胁迫调节提供依据。  方法  对艾GRF基因家族进行理化性质、进化、基因结构以及表达等生物信息学进行分析,进而通过转录组数据和实时荧光定量PCR(qRT-PCR)技术分析基因家族各成员在不同组织、逆境胁迫以及响应不同激素的表达模式。  结果  从艾基因组中共鉴定出17个GRF家族成员,理化鉴别显示其编码蛋白均为亲水蛋白;系统发育进化树分为4个亚家族;motif分析表明进化树中同一分支的基因具有相似或相同的保守基序;AaGRF基因家族成员随机分布在11条不同的染色体上;AaGRF基因家族启动子含有多种逆境和激素响应元件;AaGRF基因家族在响应盐碱胁迫时表现出不同的表达趋势;该家族成员在艾的根、茎、叶中的表达模式具有组织特异性;经脱落酸、吲哚乙酸、水杨酸和茉莉酸甲酯处理后,AaGRF05、AaGRF06、AaGRF11AaGRF14在处理后的12 h基因表达量最高,表明大部分基因在前期参与不同激素的调控。  结论  艾GRF基因家族参与艾生长发育、激素与逆境胁迫调节,为探究GRF家族功能提供的理论依据。
  • 图  1  AaGRF家族系统进化树

    AT:拟南芥;Gh:棉花;Ha:向日葵;Aa:艾。

    Figure  1.  Phylogenetic tree of AaGRFs

    AT: Arabidopsis thaliana; Gh: Gossypium hirsutum; Ha: Helianthus annuus; Aa: A. argyi.

    图  2  艾GRF基因家族的结构、结构域和motif

    Figure  2.  Structures, domains, and motifs of AaGRFs

    图  3  拟南芥GRF家族基因组结构、保守结构域和motif分析

    Figure  3.  Structures, conserved domains, and motifs of GRFs in A. thaliana

    图  4  AaGRF基因家族在染色体上的定位

    Figure  4.  Mapping of AaGRFs chromosomes

    图  5  AaGRF基因家族顺式作用元件

    Figure  5.  Cis-acting elements in AaGRFs

    图  6  AaGRF基因家族响应盐和盐碱胁迫的表达模式

    CK_L:空白对照组叶片;SAT_L:盐碱处理组叶片;ST_L:盐处理组叶片;CK_R:空白对照组根;SAT_R:盐碱处理组根;ST_R:盐处理组根。

    Figure  6.  Expressions of AaGRFs in responses to salt- and saline-alkali-stresses

    CK_L:Blank control group leaves;SAT_L:Salt alkali treatment group leaves;ST_L:Salt treatment group leaves;CK_R:Blank control group root;SAT_R:Salt alkali treatment group root;ST_R:Salt treatment group root.

    图  7  AaGRF家族成员在艾的根、茎、叶中的表达模式

    不同小写字母代表在 0.05 水平上差异显著。图8同。

    Figure  7.  Expressions of AaGRFs in roots, stems, and leaves of A. argyi

    Data with different lowercase letters represent significant differences at P<0.05. Same for Fig. 8.

    图  8  AaGRF家族成员响应激素处理的表达模式

    Figure  8.  Expressions of AaGRFs in response to hormone treatment

    表  1  AaGRF基因家族蛋白理化性质

    Table  1.   Physiochemical properties of AaGRF proteins

    基因名称
    Gene name
    基因组ID
    Genome ID
    长度
    Length/aa
    分子量
    Molecular weight /Da
    等电点
    Isoelectric point(pI)
    不稳定指数
    Instability index
    脂肪族指数
    Aliphatic index
    疏水指数
    Hydrophobic index
    AaGRF01 Aarg02G031430.1 350 39886.41 8.35 51.62 50.43 −0.921
    AaGRF02 Aarg04G019450.1 471 50852.5 9.07 41.98 64.86 −0.547
    AaGRF03 Aarg05G013120.1 315 36666.98 7.26 71.34 58.83 −0.9
    AaGRF04 Aarg06G029080.1 364 40414.66 8.87 48.27 52.77 −0.91
    AaGRF05 Aarg06G030040.1 394 43558.38 9 48.32 57.92 −0.717
    AaGRF06 Aarg06G030730.1 380 42917.36 8.13 56.92 54.92 −0.874
    AaGRF07 Aarg08G013810.1 138 15560.65 7.66 52.91 65.72 −0.541
    AaGRF08 Aarg08G014980.1 339 38274.79 8.02 49.95 43.42 −0.871
    AaGRF09 Aarg10G061780.1 335 38176.52 8.79 49.88 52.39 −0.87
    AaGRF10 Aarg11G000710.1 329 37157.12 8.97 47 52.52 −0.829
    AaGRF11 Aarg11G015240.1 501 54688.51 7.24 42.86 59.38 −0.635
    AaGRF12 Aarg12G018140.1 472 51001.69 9.16 42.64 64.51 −0.56
    AaGRF13 Aarg14G027820.1 364 40379.65 8.72 45.86 51.43 −0.898
    AaGRF14 Aarg14G028850.1 352 38751.75 8.44 51.96 54.29 −0.709
    AaGRF15 Aarg16G013730.1 138 15512.59 7.66 52.9 69.28 −0.509
    AaGRF16 Aarg16G015010.1 339 38280.78 7.66 49.46 45.13 −0.853
    AaGRF17 Aarg17G035750.1 382 41725.01 6.67 45.33 56.18 −0.678
    下载: 导出CSV
  • [1] 简梨娜, 宋学丽, 郭江涛, 等. 艾草的化学成分及临床应用 [J]. 化学工程师, 2021, 35(7):58−62.

    JIAN L N, SONG X L, GUO J T, et al. Chemical composition and clinical application of Artemisia argyi [J]. Chemical Engineer, 2021, 35(7): 58−62. (in Chinese)
    [2] 李晓红. 蕲艾的采集储藏及药用价值的探讨 [J]. 中国医药指南, 2012, 10(27):615−616.

    LI X H. Discussion on the collection, storage and medicinal value of Artemisia argyi [J]. Guide of China Medicine, 2012, 10(27): 615−616. (in Chinese)
    [3] 马超, 原佳乐, 张苏, 等. GRF转录因子对植物生长发育及胁迫响应调控的分子机制 [J]. 核农学报, 2017, 31(11):2145−2153. doi: 10.11869/j.issn.100-8551.2017.11.2145

    MA C, YUAN J L, ZHANG S, et al. The molecular mechanisms of growth-regulating factors (GRFs) in plant growth, development and stress response [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(11): 2145−2153. (in Chinese) doi: 10.11869/j.issn.100-8551.2017.11.2145
    [4] 邱玮茜, 王帅, 鞠青, 等. 鳗草GRF基因家族的鉴定与生物信息学分析 [J]. 浙江海洋大学学报(自然科学版), 2022, (1):31−37.

    QIU W Q, WANG S, JU Q, et al. Genome-wide identification and bioinformatics analysis of growth-regulating factor gamily in Zostera marina [J]. Journal of Zhejiang Ocean University (Natural Science), 2022(1): 31−37. (in Chinese)
    [5] CHOI D, KIM J H, KENDE H. Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L. ) [J]. Plant and Cell Physiology, 2004, 45(7): 897−904. doi: 10.1093/pcp/pch098
    [6] 董晨, 郑雪文, 王弋, 等. 荔枝GRF基因家族的全基因组鉴定及表达分析 [J]. 热带生物学报, 2024, 15(2):190−197.

    DONG C, ZHENG X W, WANG Y, et al. Genome-wide identification and expression analysis of GRF gene family in Litchi [J]. Journal of Tropical Biology, 2024, 15(2): 190−197.
    [7] KHATUN K, ROBIN A H K, PARK J I, et al. Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones [J]. International Journal of Molecular Sciences, 2017, 18(5): 1056. doi: 10.3390/ijms18051056
    [8] WANG P, XIAO Y, YAN M, et al. Whole-genome identification and expression profiling of growth-regulating factor (GRF) and GRF-interacting factor (GIF) gene families in Panax ginseng [J]. BMC Genomics, 2023, 24: 334. doi: 10.1186/s12864-023-09435-w
    [9] KUIJT S J H, GRECO R, AGALOU A, et al. Interaction between theGROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX Families of transcription factors [J]. Plant Physiology, 2014, 164(4): 1952−1966. doi: 10.1104/pp.113.222836
    [10] LI S C, GAO F Y, XIE K L, et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice [J]. Plant Biotechnology Journal, 2016, 14(11): 2134−2146. doi: 10.1111/pbi.12569
    [11] LIAN C L, LAN J X, MA R, et al. Genome-wide analysis of aux/IAA gene family in Artemisia argyi: Identification, phylogenetic analysis, and determination of response to various phytohormones [J]. Plants, 2024, 13(5): 564. doi: 10.3390/plants13050564
    [12] 易小哲, 邬兰, 向丽, 等. 艾Artemisia argyi实时荧光定量PCR内参基因筛选 [J]. 中国中药杂志, 2022, 8(3):659−667.

    YI X Z, WU L, XIANG L, et al. Screening of reference genes for quantitative real-time PCR in Artemisia argyi [J]. China Journal of Chinese Materia Medica, 2022, 8(3): 659−667. (in Chinese)
    [13] 薛正刚, 王树杰, 杨永乾, 等. 大麦GRF家族的基因组鉴定及生物信息学分析 [J]. 分子植物育种, 2021, 19(6):1750−1757.

    XUE Z G, WANG S J, YANG Y Q, et al. Genome-wide identification and bioinformatics analysis of growth regulating factor(GRF)family in barley [J]. Molecular Plant Breeding, 2021, 19(6): 1750−1757. (in Chinese)
    [14] 陈淑颖, 李一凡, 曾伟伟, 等. 圆齿野鸦椿YABBY基因家族鉴定及功能分析 [J]. 森林与环境学报, 2023, 43(3):303−310.

    CHEN S Y, LI Y F, ZENG W W, et al. Identification and functional analysis of the YABBY gene family in Euscaphis konishii [J]. Journal of Forest and Environment, 2023, 43(3): 303−310. (in Chinese)
    [15] SINGH K. Transcription factors in plant defense and stress responses [J]. Current Opinion in Plant Biology, 2002, 5(5): 430−436. doi: 10.1016/S1369-5266(02)00289-3
    [16] FENG K, HOU X L, XING G M, et al. Advances in AP2/ERF super-family transcription factors in plant [J]. Critical Reviews in Biotechnology, 2020, 40(6): 750−776. doi: 10.1080/07388551.2020.1768509
    [17] DU W X, YANG J F, LI Q, et al. Genome-wide identification and characterization of growth regulatory factor family genes in Medicago [J]. International Journal of Molecular Sciences, 2022, 23(13): 6905. doi: 10.3390/ijms23136905
    [18] WANG F D, QIU N W, DING Q, et al. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J]. BMC Genomics, 2014, 15(1): 807. doi: 10.1186/1471-2164-15-807
    [19] KIM J H, CHOI D, KENDE H. The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis [J]. The Plant Journal, 2003, 36(1): 94−104. doi: 10.1046/j.1365-313X.2003.01862.x
    [20] NOON J B, HEWEZI T, BAUM T J. Homeostasis in the soybean miRNA396–GRF network is essential for productive soybean cyst nematode infections [J]. Journal of Experimental Botany, 2019, 70(5): 1653−1668. doi: 10.1093/jxb/erz022
    [21] 张立全, 张浩林, 李丛丛, 等. 谷子GRF基因家族鉴定与分析 [J]. 西南农业学报, 2021, 34(11):2340−2347.

    ZHANG L Q, ZHANG H L, LI C C, et al. Genome-wide analysis and identification of GRF gene family in foxtail millet (Setaria italica) [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(11): 2340−2347. (in Chinese)
    [22] 时丕彪, 何冰, 费月跃, 等. 藜麦GRF转录因子家族的鉴定及表达分析 [J]. 作物学报, 2019, 45(12):1841−1850.

    SHI P B, HE B, FEI Y Y, et al. Identification and expression analysis of GRF transcription factor family of Chenopodium quinoa [J]. Acta Agronomica Sinica, 2019, 45(12): 1841−1850. (in Chinese)
    [23] 申孜, 闫小玲, 郝琴, 等. 毛竹PheMADS47a基因启动子克隆及功能分析[J]. 核农学报, 2024, 38(9): 1682−1690.

    SHEN Z, YAN X L, HAO Q, et al. Cloning and Functional Analysis of the Promoter of PheMADS47a Gene in Moso Bamboo (Phyllostachys edulis) [J]. Journal of Nuclear Agricultural Sciences, 2024, 38 (9): 1682−1690. (in Chinese)
    [24] HUANG W D, HE Y Q, YANG L, et al. Genome-wide analysis of growth-regulating factors (GRFs) in Triticum aestivum [J]. PeerJ, 2021, 9: e10701. doi: 10.7717/peerj.10701
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  126
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 修回日期:  2024-04-16
  • 网络出版日期:  2024-06-26
  • 刊出日期:  2024-05-28

目录

    /

    返回文章
    返回