• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饲草附生乳酸菌对碳源的选择性

陈鑫珠 董朝霞 张建国

陈鑫珠,董朝霞,张建国. 饲草附生乳酸菌对碳源的选择性 [J]. 福建农业学报,2024,39(5):512−521 doi: 10.19303/j.issn.1008-0384.2024.05.002
引用本文: 陈鑫珠,董朝霞,张建国. 饲草附生乳酸菌对碳源的选择性 [J]. 福建农业学报,2024,39(5):512−521 doi: 10.19303/j.issn.1008-0384.2024.05.002
CHEN X Z, DONG Z X, ZHANG J G. Silage Carbon Sources Preferred by Epiphytic Lactic Acid Bacteria [J]. Fujian Journal of Agricultural Sciences,2024,39(5):512−521 doi: 10.19303/j.issn.1008-0384.2024.05.002
Citation: CHEN X Z, DONG Z X, ZHANG J G. Silage Carbon Sources Preferred by Epiphytic Lactic Acid Bacteria [J]. Fujian Journal of Agricultural Sciences,2024,39(5):512−521 doi: 10.19303/j.issn.1008-0384.2024.05.002

饲草附生乳酸菌对碳源的选择性

doi: 10.19303/j.issn.1008-0384.2024.05.002
基金项目: 国家自然科学基金项目(31971764、32302791);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021019);福建省科技计划公益类专项(2020R1021002)
详细信息
    作者简介:

    陈鑫珠(1985 —),女,博士,副研究员,主要从事动物营养、非常规饲料资源的开发利用和饲草加工与贮藏研究, E-mail:010622051@163.com

    通讯作者:

    张建国(1968 —),男,博士生导师,教授,主要从事饲草料加工利用、生物活性成分研究,E-mail:zhangjg@scau.edu.cn

  • 中图分类号: S816.53

Silage Carbon Sources Preferred by Epiphytic Lactic Acid Bacteria

  • 摘要:   目的  探究饲草源乳酸菌对碳源的选择性,为不同草种筛选适宜的青贮菌种。  方法  选取饲草中分离获得的16株代表性乳酸菌作为研究对象,在MRS液体培养基中以葡萄糖、蔗糖、果糖、木糖、棉籽糖以及5种糖混合为碳源,进行不同菌株发酵培养。每株乳酸菌设3个重复,每个糖处理设空白对照(不接菌)。采用高效液相色谱仪测定各处理发酵24 h后液体培养基中剩余碳源含量和乳酸产量。  结果  (1)蔗糖是大部分菌株发酵首选碳源,在棉籽糖、葡萄糖、果糖和木糖的选择上不同菌株差异较大,发酵乳杆菌(Lactobacillus fermentum, LbF-WM)首选棉籽糖和木糖,假肠膜明串珠菌(Leuconostioc pseudomesenteroides, LeP-IR)首选木糖。(2)罗伊氏乳杆菌(Lactobacillus reuteri, LbR-EG)和柠檬明串珠菌(Leuconostoc citreum, LeC-IR)对蔗糖,LbF-WM和LbR-EG对果糖, LbF-WM 、LbR-EG和LeP-IR对棉籽糖的利用率均达100%,屎肠球菌(Enterococcus faecium, EF-KG)、短乳杆菌(Lactobacillus brevis, LbB-KG)、戊糖乳杆菌(Lactobacillus pentosus, LbPe-EG)、乳酸乳球菌(Lactococcus lactis, LcL-SC)对葡萄糖的利用率高于其他碳源。(3)灰黄色肠球菌(Enterococcus durans, EG-IR)利用葡萄糖和混合糖,LbPe-EG利用果糖,肠膜明串珠菌(Leuconostoc mesenteroides, LeM-IR)利用棉籽糖和混合糖,LbPe-EG利用蔗糖,LbF-WM利用木糖,格氏乳球菌(Lactococcus garvieae, LcG-IR)利用混合糖发酵乳酸产量最高。(4)耐久肠球菌(Enterococcus durans, ED-IR)利用葡萄糖,植物乳杆菌(Lactobacillus plantarum, LbPl-IR)、LbPe-EG利用果糖, LbPl-IR和LeM-IR利用棉籽糖, LbPe-EG、LbPl-IR和ED-IR利用蔗糖, LeP- IR利用木糖,LcG-IR和EG-IR利用混合糖产乳酸效率较高。LbPl-IR在5种单糖中产酸效率均达80%以上。  结论  不同菌株对同一碳源的利用率、产酸量和产酸效率均不同;同一株菌株对不同碳源的利用率、产酸量和产酸效率也不相同。其中,蔗糖为大部分菌株的首选碳源,蔗糖和葡萄糖的利用率和产乳酸量较高,葡萄糖的产酸效率较高;青贮调制时,可针对饲草中分布乳酸菌种类选择最适碳源。
  • 图  1  16株乳酸菌培养24 h后在5种糖混合培养基中各种糖的剩余含量

    1)图中柱状数据表示混合糖培养基中剩余各糖的百分含量。2)CK,无接菌的混合糖培养基。

    Figure  1.  Contents of residual sugars in mixed sugar media of 16 different LAB cultured for 24 h

    1) Datas on the column are contents of residual individual sugars in medium of mixed sugars; 2) CK, without inoculation on medium of mixed sugars.

    表  1  16株乳酸菌的名称及来源

    Table  1.   Names and sources of 16 LAB strains

    序号
    No.
    编号
    Code
    种名
    Species
    来源
    Source
    序号
    No.
    编号
    Code
    种名
    Species
    来源
    Source
    1 EF-KG 屎肠球菌 E. faecium 热研四号王草 9 LcG-IR 格氏乳球菌 Lc. garvieae 意大利黑麦草
    2 ED-IR 耐久肠球菌 E. durans 意大利黑麦草 10 LcL-SC 乳酸乳球菌 Lc. lactis 甜玉米
    3 EG-IR 灰黄色肠球菌 E. gilvus 意大利黑麦草 11 LeC-IR 柠檬明串珠菌 Le. citreum 意大利黑麦草
    4 LbB-KG 短乳杆菌 Lb. brevis 热研四号王草 12 LeM-IR 肠膜明串珠菌 Le. mesenteroides 意大利黑麦草
    5 LbF-WM 发酵乳杆菌 Lb. fermentum 糯玉米 13 LeP-IR 假肠膜明串珠菌 Le. pseudomesenteroides 意大利黑麦草
    6 LbPe-EG 戊糖乳杆菌 Lb. pentosus 摩特矮象草 14 WCo-KG 融合乳杆菌 W. confusa 热研四号王草
    7 LbPl-IR 植物乳杆菌 Lb. plantarum 意大利黑麦草 15 WCi-MT 魏斯特菌 W. cibaria MT-1杂交象草
    8 LbR-EG 罗伊氏乳杆菌 Lb. reuteri 摩特矮象草 16 WP-IR 类肠膜魏斯氏菌 W. paramesenteroides 意大利黑麦草
    下载: 导出CSV

    表  2  牧草原料中糖分组成

    Table  2.   Sugars in native grass material (单位:%)

    项目
    Item
    葡萄糖
    Glucose
    蔗糖
    Sucrose
    果糖
    Fructose
    棉籽糖
    Raffinose
    木糖
    Xylose
    热研四号王草
    Pennisetum purpureum × P. americanum cv. Reyan No.4
    0.07±0.01c 1.91±0.37a 1.34±0.23b 1.86±0.06a 0.00±0.00c
    MT-1象草
    P. purpureum cv. MT-1
    0.10±0.01c 1.82±0.08a 1.41±0.25b 1.28±0.27b 0.03±0.00c
    摩特矮象草
    P. purputeum cv. Mott
    0.12±0.01c 1.75±0.29ab 2.11±0.13a 1.58±0.31b 0.09±0.09c
    甜玉米
    Zea mays L. saccharata Sturt.
    1.84±0.26b 6.00±0.96a 1.12±0.11b 0.00±0.00c 0.00±0.00c
    糯玉米
    Zea mays L. Sinensisa Kulesh
    1.81±0.36b 5.06±0.37a 0.93±0.02c 0.00±0.00d 0.00±0.00d
    意大利黑麦草
    Lolium multiflorum
    0.70±0.39ab 0.94±0.36a 0.34±0.07b 0.08±0.08c 0.10±0.04c
    同行数据后不同小写字母表示差异显著(P<0.05),相同或无字母表示差异不显著(P>0.05);下表同。
    Data with different lowercase letters on same row represent significant difference(P<0.05); those with same or no letter, no significant difference(P>0.05). Same for below.
    下载: 导出CSV

    表  3  16株乳酸菌对6种糖源培养液发酵后的碳源利用率

    Table  3.   Sugar utilization by 16 different LAB in 6 sugar treatments (单位:%)

    菌株编号
    Strain code
    葡萄糖MRS培养基
    MRS-P
    果糖MRS培养基
    MRS-G
    棉籽糖MRS培养基
    MRS-MZ
    蔗糖MRS培养基
    MRS-Z
    木糖MRS培养基
    MRS-M
    混合糖MRS培养基
    MRS- MIX
    EF-KG 94.68±1.01a 29.25±3.43e 0.73±0.53f 89.99±1.72b 59.95±1.48c 50.27±0.54d
    ED-IR 44.76±2.10b 60.48±1.52a 63.67±0.91a 69.87±1.16a 5.22±0.18c 39.83±2.34b
    EG-IR 71.44±3.35ab 58.97±3.27bc 49.20±1.22cd 81.23±1.54a 0.00±0.00e 39.56±0.89d
    LbB-KG 72.13±1.05a 18.10±0.53c 7.80±4.49c 50.41±0.10b 46.74±0.10b 38.82±2.37b
    LbF-WM 87.50±1.43b 100.00±0.00a 100.00±0.00a 89.79±3.33b 79.15±0.84b 33.33±4.13c
    LbPe-EG 82.97±0.73a 60.31±0.62b 37.42±3.02c 76.75±1.05ab 1.10±0.19d 38.56±2.88c
    LbPl-IR 69.56±1.06a 58.45±1.72a 60.34±1.81a 72.80±2.56a 0c 39.57±2.86b
    LbR-EG 82.07±2.63b 100.00±0.00a 100.00±0.00a 100.00±0.00a 0d 31.01±5.99c
    LcG-IR 78.09±0.84ab 60.59±1.02b 74.69±0.71ab 81.48±1.64a 1.92±0.42d 38.11±3.78c
    LcL-SC 93.58±1.01a 0e 18.52±0.52d 90.29±0.82a 37.25±0.12c 52.81±5.62b
    LeC-IR 83.17±3.13b 79.15±0.61b 10.49±0.03d 100.00±0.00a 15.54±0.16d 44.51±10.98c
    LeM-IR 73.89±1.05a 55.36±4.22b 70.94±0.01a 74.02±0.65a 0d 24.70±4.80c
    LeP-IR 80.19±1.64b 90.59±0.10a 100.00±0.00a 52.23±6.10c 24.86±20.14c 33.81±2.39c
    WCo-KG 76.66±1.64b 9.93±5.08e 17.11±1.42d 96.40±1.00a 48.27±0.10c 53.27±6.55c
    WCi-MT 67.93±3.46a 56.89±0.82a 68.83±1.55a 71.00±0.86a 8.80±0.18b 27.70±7.52b
    WP-IR 79.14±1.24a 73.84±0.01a 79.16±2.21a 79.09±1.13a 0c 41.12±7.76b
    下载: 导出CSV

    表  4  16株乳酸菌在不同碳源培养基发酵中的乳酸产量

    Table  4.   Lactic acid production by 16 different LAB on different carbon media (单位:%)

    菌株编号
    Strain code
    葡萄糖MRS培养基
    MRS-P
    果糖MRS培养基
    MRS-G
    棉籽糖MRS培养基
    MRS-MZ
    蔗糖MRS培养基
    MRS-Z
    木糖MRS培养基
    MRS-M
    混合糖MRS培养基
    MRS- MIX
    EF-KG 0.69±0.01a 0.32±0.02b 0. 01±0.00c 0.62±0.01a 0.58±0.03a 0.55±0.02a
    ED-IR 0.89±0.02a 0.85±0.05a 0.21±0.03b 1.14±0.01a 0.02±0.00c 0.86±0.06a
    EG-IR 1.25±0.05a 0.73±0.05b 0.66±0.03b 0.87±0.00b 0.01±0.00c 1.00±0.03a
    LbB-KG 0.71±0.00a 0.29±0.03c 0.23±0.00c 0.56±0.06b 0.63±0.04b 0.61±0.04b
    LbF-WM 0.67±0.01b 0.36±0.04c 0.71±0.01b 0.73±0.00b 0.94±0.00a 0.67±0.05b
    LbPe-EG 1.08±0.04b 1.10±0.06a 0.43±0.04c 1.31±0.00a 0.01±0.00c 0.98±0.02b
    LbPl-IR 1.14±0.01a 1.07±0.05a 1.01±0.02a 1.23±0.03a 0.61±0.02b 0.77±0.00b
    LbR-EG 0.73±0.02ab 0.69±0.04ab 0.86±0.02a 0.55±0.03b 0.63±0.04ab 0.67±0.00 ab
    LcG-IR 1.18±0.04a 0.88±0.00b 1.02±0.04a 1.15±0.01a 0.31±0.00c 1.08±0.05a
    LcL-SC 0.69±0.02a 0.45±0.06b 0.15±0.00c 0.52±0.05ab 0.50±0.02ab 0.58±0.00a
    LeC-IR 0.71±0.02a 0.67±0.02a 0.14±0.05c 0.42±0.02b 0.15±0.00c 0.45±0.01b
    LeM-IR 1.13±0.04a 1.01±0.05a 1.16±0.00a 1.13±0.00a 0.71±0.01b 1.06±0.02a
    LeP-IR 0.79±0.00a 0.54±0.02c 0.76±0.02a 0.65±0.01bc 0.78±0.00a 0.61±0.01bc
    WCo-KG 0.60±0.02a 0.43±0.00b 0.13±0.00c 0.62±0.06a 0.55±0.02a 0.50±0.02ab
    WCi-MT 1.11±0.05a 0.54±0.00b 0.36±0.02c 0.67±0.05b 0.10±0.01d 0.69±0.02b
    WP-IR 0.58±0.00a 0.52±0.00a 0.08±0.01c 0.32±0.00b 0.64±0.02a 0.31±0.00b
    下载: 导出CSV

    表  5  16株乳酸菌的产酸效率

    Table  5.   Acid production efficiency of 16 different LAB (单位:%)

    菌株编号
    Strain code
    葡萄糖MRS培养基
    MRS-P
    果糖MRS培养基
    MRS-G
    棉籽糖MRS培养基
    MRS-MZ
    蔗糖MRS培养基
    MRS-Z
    木糖MRS培养基
    MRS-M
    混合糖MRS培养基
    MRS- MIX
    EF-KG 36.44±0.01c 54.69±0.06a 34.26±1.17d 34.45±0.01d 48.38±0.06b 54.71±0.59a
    ED-IR 99.41±0.22a 70.27±0.02d 16.49±0.00f 81.58±0.07b 19.16±0.66e 71.47±0.00c
    EG-IR 87.49±0.06a 61.90±0.02d 67.07±0.02c 53.55±0.03e 50.00±0.00f 82.72±0.00b
    LbB-KG 49.21±0.04b 80.12±0.15ab 81.69±0.20a 55.55±0.11b 67.40±0.15ab 49.85±0.00b
    LbF-WM 38.29±0.01d 18.00±0.00f 35.50±0.00e 40.65±0.01c 59.38±0.03a 49.12±0.00b
    LbPe-EG 65.08±0.02d 91.20±0.03a 57.46±0.03e 85.34±0.06b 23.10±3.98f 79.76±0.00c
    LbPl-IR 81.94±0.06d 91.53±0.03a 83.69±0.01c 84.70±0.45b 81.33±0.00e 63.71±0.00f
    LbR-EG 44.48±0.02c 34.50±0.00e 43.00±0.00d 27.50±0.00f 45.99±0.00b 48.56±0.00a
    LcG-IR 75.55±0.04b 72.61±0.02c 68.28±0.01e 70.57±0.03d 41.77±0.00f 87.25±0.00a
    LcL-SC 36.87±0.01d 66.18±0.00b 40.49±0.05e 28.80±0.01f 67.11±0.22a 61.45±0.00c
    LeC-IR 42.69±0.02c 42.32±0.01c 66.75±0.14a 21.00±0.00e 48.28±0.50b 40.55±0.00d
    LeM-IR 76.47±0.05d 91.22±0.03a 81.76±0.01b 76.33±0.05e 79.78±0.00c 70.38±0.00f
    LeP-IR 49.26±0.03c 29.80±0.01f 38.00±0.00e 62.23±0.12b 86.66±0.00a 46.08±0.00d
    WCo-KG 39.13±0.02d 43.10±0.00c 37.98±0.05e 32.16±0.00f 56.97±0.12a 53.50±0.00b
    WCi-MT 81.70±0.07a 47.46±0.02c 26.15±0.00d 47.18±0.04c 56.85±1.12b 47.72±0.00c
    WP-IR 36.65±0.02a 35.21±0.01a 5.05±0.00b 20.23±0.01ab 15.80±27.37ab 26.33±0.00ab
    下载: 导出CSV
  • [1] 张志飞, 王青兰. 牧草青贮乳酸菌研究进展 [J]. 湖南生态科学学报, 2021, 8(1):70−76. doi: 10.3969/j.issn.2095-7300.2021.01.010

    ZHANG Z F, WANG Q L. Research progress of lactic acid bacteria in forage silage [J]. Journal of Hunan Ecological Science, 2021, 8(1): 70−76. (in Chinese) doi: 10.3969/j.issn.2095-7300.2021.01.010
    [2] 杨俊峰, 沈向华, 金曙光. 乳酸菌在饲料青贮中的应用及研究进展 [J]. 浙江畜牧兽医, 2011, 36(5):9−11. doi: 10.3969/j.issn.1005-7307.2011.05.005

    YANG J F, SHEN X H, JIN S G. Application and research progress of lactic acid bacteria in feed silage [J]. Zhejiang Journal Animal Science and Veterinary Medicine, 2011, 36(5): 9−11. (in Chinese) doi: 10.3969/j.issn.1005-7307.2011.05.005
    [3] 李新一, 程晨, 尹晓飞, 等. 中外草牧业发展历程、重点与中国草牧业发展措施 [J]. 草原与草业, 2020, 32(4):6−13. doi: 10.3969/j.issn.2095-5952.2020.04.007

    LI X Y, CHENG C, YIN X F, et al. Comparative analysis and enlightening countermeasures of Chinese and foreign grass and husbandry development [J]. Grassland and Prataculture, 2020, 32(4): 6−13. (in Chinese) doi: 10.3969/j.issn.2095-5952.2020.04.007
    [4] 杨楠, 邹苏燕, 戚如鑫, 等. 青贮微生物制剂及优良青贮菌种筛选的研究进展 [J]. 动物营养学报, 2020, 32(2):578−585. doi: 10.3969/j.issn.1006-267x.2020.02.013

    YANG N, ZOU S Y, QI R X, et al. Research progress on microbial preparations of silage and selection of optimum strains for silage preparing [J]. Chinese Journal of Animal Nutrition, 2020, 32(2): 578−585. (in Chinese) doi: 10.3969/j.issn.1006-267x.2020.02.013
    [5] 吕竑建, 郭香, 陈德奎, 等. 植物乳酸菌和贮藏温度对辣木叶青贮品质的影响 [J]. 草业学报, 2021, 30(3):121−128. doi: 10.11686/cyxb2020152

    LV H J, GUO X, CHEN D K, et al. Effect of lactic acid bacteria and storage temperature on the quality of Moringa oleifera leaf silage [J]. Acta Prataculturae Sinica, 2021, 30(3): 121−128. (in Chinese) doi: 10.11686/cyxb2020152
    [6] CAI Y M, BENNO Y, OGAWA M, et al. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation [J]. Applied and Environmental Microbiology, 1998, 64(8): 2982−2987. doi: 10.1128/AEM.64.8.2982-2987.1998
    [7] 蔡红英. 植物乳杆菌对小鼠肝脏脂代谢的调控与作用机制[D]. 北京: 中国农业科学院, 2020.

    CAI H Y. Effects and Mechanisms of Hepatic Lipid Regulation in Mice by Lactobacillus Plantarum[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
    [8] LINDOW S E, BRANDL M T. Microbiology of the phyllosphere [J]. Applied and Environmental Microbiology, 2003, 69(4): 1875−1883. doi: 10.1128/AEM.69.4.1875-1883.2003
    [9] MERCIER J, LINDOW S E. Role of leaf surface sugars in colonization of plants by bacterial epiphytes [J]. Applied and Environmental Microbiology, 2000, 66(1): 369−374. doi: 10.1128/AEM.66.1.369-374.2000
    [10] 郝永伟, 吕蕾. 植物乳杆菌增菌培养基碳源优化 [J]. 齐鲁工业大学学报, 2014, 28(1):36−38.

    HAO Y W, LV L. Optimization of carbon of culture medium for accumulating Lactobacillus plantarum [J]. Journal of Qilu University of Technology, 2014, 28(1): 36−38. (in Chinese)
    [11] 金玉洁, 何国庆. 植物乳杆菌ZU018增殖培养基的优化[J]. 食品工业科技, 2020, 41(14): 94-100.

    JIN Y J, HE G Q. Optimization of Lactobacillus plantarum ZU018 proliferation medium[J]. Science and Technology of Food Industry, 2020, 41(14): 94-100. (in Chinese)
    [12] 洪梅, 刁其玉, 闫贵龙, 等. 响应面法优化青贮饲料乳酸菌的培养条件 [J]. 动物营养学报, 2010, 22(5):1307−1313. doi: 10.3969/j.issn.1006-267x.2010.05.027

    HONG M, DIAO Q Y, YAN G L, et al. Optimization of culture conditions for silage lactic acid bacteria via a response surface technique [J]. Chinese Journal of Animal Nutrition, 2010, 22(5): 1307−1313. (in Chinese) doi: 10.3969/j.issn.1006-267x.2010.05.027
    [13] CHEN X Z, ZHUANG Y F, DONG Z X, et al. Factors influencing the distribution of lactic acid bacteria on Pennisetum grasses [J]. Grassland Science, 2017, 63(3): 150−158. doi: 10.1111/grs.12161
    [14] 范佳硕, 杨鑫, 陈博, 等. 植物乳杆菌发酵培养基优化及工艺开发 [J]. 发酵科技通讯, 2020, 49(1):21−26.

    FAN J S, YANG X, CHEN B, et al. Optimization of Lactobacillus plantarum fermentation medium and process development [J]. Bulletin of Fermentation Science and Technology, 2020, 49(1): 21−26. (in Chinese)
    [15] ZHANG J, TANAKA O, UEGAKI R, et al. The effect of inoculation and additives on D (–) - and L(+)-lactic acid production and fermentation quality of guineagrass (Panicum maximum Jacq) silage [J]. Journal of the Science of Food and Agriculture, 2000, 80(15): 2186−2189. doi: 10.1002/1097-0010(200012)80:15<2186::AID-JSFA767>3.0.CO;2-1
    [16] 陈绮, 雷文平, 肖茜, 等. 植物乳杆菌XN1904E产胞外多糖发酵条件优化 [J]. 乳业科学与技术, 2020, 43(3):1−5.

    CHEN Q, LEI W P, XIAO Q, et al. Optimization of fermentation conditions for exopolysaccharide production by Lactobacillus plantarum XN1904E [J]. Journal of Dairy Science and Technology, 2020, 43(3): 1−5. (in Chinese)
    [17] 陶静, 许赛信, 孟德俊, 等. 乳酸菌发酵生产胞外多糖条件优化研究 [J]. 食品工业, 2017, 38(1):28−31.

    TAO J, XU S X, MENG D J, et al. The conditions optimization of Lactobacillus exopolysaccharides fermentation [J]. The Food Industry, 2017, 38(1): 28−31. (in Chinese)
    [18] 刘金玲, 李嘉文, 张含雪, 等. 罗伊乳杆菌增殖培养基中碳源氮源的优化 [J]. 中国微生态学杂志, 2016, 28(5):533−537.

    LIU J L, LI J W, ZHANG H X, et al. Optimization of carbon and nitrogen sources of enrichment culture medium for Lactobacillus reuteri [J]. Chinese Journal of Microecology, 2016, 28(5): 533−537. (in Chinese)
    [19] 季海蕊, 郭尚旭, 姜静, 等. 乳酸明串珠菌(Leuconostoc lactis)L2体内耐受性及产胞外多糖条件研究 [J]. 黑龙江大学自然科学学报, 2020, 37(5):580−587.

    JI H R, GUO S X, JIANG J, et al. The in vivo tolerance of Leuconostoc lactis L2 and its condition study on exopolysaccharide production [J]. Journal of Natural Science of Heilongjiang University, 2020, 37(5): 580−587. (in Chinese)
    [20] 李想, 王然, 程建军, 等. 植物乳杆菌培养基的优化 [J]. 东北农业大学学报, 2008, 39(9):96−99. doi: 10.3969/j.issn.1005-9369.2008.09.023

    LI X, WANG R, CHENG J J, et al. Optimization of culture medium for L. plantarum [J]. Journal of Northeast Agricultural University, 2008, 39(9): 96−99. (in Chinese) doi: 10.3969/j.issn.1005-9369.2008.09.023
    [21] 岳苗苗, 汪岚, 唐国建, 等. 青贮用乳酸菌的高效保存方法研究 [J]. 饲料研究, 2020, 43(10):73−77.

    YUE M M, WANG L, TANG G J, et al. Research on efficient preservation of lactic acid bacteria as silage additive [J]. Feed Research, 2020, 43(10): 73−77. (in Chinese)
    [22] 刘毓锋, 曾嘉锐, 黄文琪, 等. 外源碳源对葡萄酵素微生物生长代谢及生物活性的调节作用 [J]. 食品工业科技, 2020, 41(8):104−110,116.

    LIU Y F, ZENG J R, HUANG W Q, et al. Regulating effect of exogenous carbon source on microbial growth and metabolism in grape fermentation and its bioactivity [J]. Science and Technology of Food Industry, 2020, 41(8): 104−110,116. (in Chinese)
    [23] 程方方, 杨连玉, 许雪魁, 等. 糖蜜和乳酸菌对光叶紫花苕青贮品质的影响 [J]. 草地学报, 2012, 20(5):947−951.

    CHENG F F, YANG L Y, XU X K, et al. Effect of adding molasses and lactic acid bacteria on the silage quality of smooth vetch [J]. Acta Agrestia Sinica, 2012, 20(5): 947−951. (in Chinese)
    [24] 荣辉, 余成群, 李志华, 等. 添加糖蜜和尿素对象草青贮发酵品质的影响 [J]. 草地学报, 2012, 20(5):940−946.

    RONG H, YU C Q, LI Z H, et al. Effects of adding molasses and urea on fermentation quality of Napier grass silage [J]. Acta Agrestia Sinica, 2012, 20(5): 940−946. (in Chinese)
    [25] YOKOTA H, KIM J H, OKAJIMA T, et al. Nutritional quality of wilted Napier grass (Pennisetum purpureum Schum. ) ensiled with or without molasses [J]. Asian-Australasian Journal of Animal Sciences, 1992, 5(4): 673−679. doi: 10.5713/ajas.1992.673
    [26] 郭金双, 赵广永, 杨雅芳, 等. 添加蔗糖对大麦青贮品质及中、酸性洗涤纤维瘤胃降解率的影响 [J]. 中国畜牧杂志, 2000, 36(4):18−20. doi: 10.3969/j.issn.0258-7033.2000.04.007

    GUO J S, ZHAO G Y, YANG Y F, et al. Effect of sugar supplementation on the quality of barley silage and NDF and ADF degradation in the rumen of cattle [J]. Chinese Journal of Animal Science, 2000, 36(4): 18−20. (in Chinese) doi: 10.3969/j.issn.0258-7033.2000.04.007
    [27] 万里强, 李向林. 乳酸菌复合添加剂糖分浓度对不同含水量苜蓿青贮效果的影响 [J]. 中国草地, 2005, 27(1):45−51.

    WAN L Q, LI X L. Influence of sugar contents in lactic bacteria compound additives on different moisture alfalfa silage [J]. Grassland of China, 2005, 27(1): 45−51. (in Chinese)
  • 加载中
图(1) / 表(5)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  152
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 修回日期:  2024-02-18
  • 网络出版日期:  2024-06-26
  • 刊出日期:  2024-05-28

目录

    /

    返回文章
    返回