• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转录组测序分析青稞对啶磺草胺的耐药性

蔡青 翁华

蔡青,翁华. 转录组测序分析青稞对啶磺草胺的耐药性 [J]. 福建农业学报,2024,39(4):492−502 doi: 10.19303/j.issn.1008-0384.2024.04.014
引用本文: 蔡青,翁华. 转录组测序分析青稞对啶磺草胺的耐药性 [J]. 福建农业学报,2024,39(4):492−502 doi: 10.19303/j.issn.1008-0384.2024.04.014
CAI Q, WENG H. Transcriptome Analysis on Pyroxsulam-resistance of Naked Barley [J]. Fujian Journal of Agricultural Sciences,2024,39(4):492−502 doi: 10.19303/j.issn.1008-0384.2024.04.014
Citation: CAI Q, WENG H. Transcriptome Analysis on Pyroxsulam-resistance of Naked Barley [J]. Fujian Journal of Agricultural Sciences,2024,39(4):492−502 doi: 10.19303/j.issn.1008-0384.2024.04.014

转录组测序分析青稞对啶磺草胺的耐药性

doi: 10.19303/j.issn.1008-0384.2024.04.014
基金项目: 青海省科技厅基础研究项目(2023-ZJ-930M)
详细信息
    作者简介:

    蔡青(1999 —),女,硕士研究生,主要从事杂草治理与利用研究,E-mail:2663146708@qq.com

    通讯作者:

    翁华(1979 —),女,硕士,副研究员,主要从事杂草治理与利用研究,E-mail:wenghua_0872@163.com

  • 中图分类号: S512

Transcriptome Analysis on Pyroxsulam-resistance of Naked Barley

  • 摘要:   目的  挖掘青稞代谢啶磺草胺可能涉及的重要基因,明确青稞对啶磺草胺的代谢解毒机制,为啶磺草胺的科学使用和耐受除草剂的青稞品种选育提供理论基础。  方法  以啶磺草胺处理0 、1 、6 d的敏感青稞品种青0160以及耐药青稞品种青0306的叶片为材料,借助高通量测序技术进行转录组测序结果分析。  结果  GO富集分析结果表明,啶磺草胺处理前后差异表达基因均显著富集在光合作用上。KEGG富集分析表明,啶磺草胺处理1 d后,谷胱甘肽代谢途径中抗氧化剂相关基因以及苯丙素和吡啶生物碱生物合成途径中与应激相关基因显著富集;啶磺草胺处理6 d后,与维持细胞功能的一系列生物过程及氨基酸的生物合成和代谢相关的基因显著富集。进一步分析表明,两个品种中的SOD21972、POD55052、CAT15170、DHAR59510、APX42784、GR34873、GSTs849、GSTs36979、GSTs31507、GSTs15106、GSTs20762表达上调,PSⅡ55705Cc31194、Cc17547、Cc17551、CYP12424受到抑制;其中POD55052在敏感青稞中表达量高于耐药青稞,SOD21972、CAT15170、DHAR59510、APX42784、GR34873、GSTs849、GSTs36979、GSTs31507、GSTs15106、GSTs20762、PSⅡ55705、Cc31194、Cc17547、Cc17551、CYP12424在耐药青稞中表达量高于敏感青稞,这些基因可能参与了青稞耐啶磺草胺机制。qRT-PCR相对表达量和转录组测序结果变化趋势基本一致,证明转录组测序结果具有可靠性。  结论  明确了青稞对啶磺草胺的代谢解毒机制,为青稞耐受啶磺草胺提供分子基础,对啶磺草胺安全用药及选育青稞耐除草剂品种有重要意义。
  • 图  1  敏感、耐药青稞对啶磺草胺的响应

    A:处理前;B:处理1 d后;C:处理6 d后。

    Figure  1.  Responses to pyroxsulam of herbicide-sensitive and herbicide-resistant naked barley

    A: before treatment; B: 1 d after treatment; C: 6 d after treatment.

    图  2  基因表达间的相关性矩形分析

    Figure  2.  Rectangular analysis of correlation between gene expressions

    图  3  敏感、耐药青稞对啶磺草胺的差异表达基因

    A:R0 vs S0 火山图;B:R1 vs S1 火山图;C:R6 vs S6 火山图;D:每个比较组合的差异表达基因数。

    Figure  3.  DEGs of herbicide-sensitive and herbicide-resistant naked barley response to pyroxsulam

    A: R0 vs. S0 volcano; B: R1 vs. S1 volcano;C: R6 vs. S6 volcano;D: number of DEGs in each comparison combination.

    图  4  差异表达基因的GO富集分析

    A:R0 vs S0的GO富集分析;B:R1 vs S1的GO富集分析;C:R6 vs S6的GO富集分析。

    Figure  4.  GO enrichment analysis on DGEs

    A: R0 vs. S0 GO enrichment analysis; B: R1 vs. S1 GO enrichment analysis; C: R6 vs. S6 GO enrichment analysis.

    图  5  抗氧化系统相关基因表达量分析

    Figure  5.  Gene expression related to antioxidants

    图  6  代谢酶GSTs相关基因表达量分析

    Figure  6.  Expressions of GSTs-related genes of metabolic enzymes

    图  7  光合作用相关基因表达量分析

    Figure  7.  Expressions of photosynthesis-related genes

    图  8  qRT-PCR验证基因表达

    Figure  8.  qRT-PCR verification of gene expression

    表  1  Real-time qRT-PCR分析所用引物序列

    Table  1.   Sequence of primer for qRT-PCR analysis

    基因名称
    Gene name
    正向引物(5'–3′)
    Forward primer(5'–3′)
    反向引物(5'–3′)
    Reverse primer(5'–3′)
    gene_07062 CCAGTCAAGCATCAAAAGCA GCAGAAAGGCCACTGTTTTC
    gene_12424 CAAGGAGAGCGGTGCTAAAC AGCTCCTCTTGCAGCTTCTG
    gene_26867 GACGGAGATGTGCAGAGTGA GTGCTGGTTTCACCACCTTT
    gene_59076 ACCGCAGCATAGCAGAAGAT AAGGGAGAAGCACCAGTTCA
    Actin
    (青稞
    Hulless barley)
    CTATTCAGGCCGTGCTTTCC CCAGCGAGATCCAAACGAAG
    下载: 导出CSV

    表  2  差异表达基因显著富集KEGG途径

    Table  2.   Significantly enriched KEGG-pathway of DGEs

    途径注释
    Description of pathway
    差异表达基因
    DEGs
    途径注释
    Description of pathway
    差异表达基因
    DEGs
    R0 vs S0 R6 vs S6
    碳代谢 Carbon metabolism 139 核糖体 Ribosome 109
    光合生物中的碳固定
    Carbon fixation in photosynthetic organisms
    41 氨基酸生物合成
    Biosynthesis of amino acids
    90
    丙酮酸代谢 Pyruvate metabolism 43 碳代谢 Carbon metabolism 101
    氨基酸生物合成 Biosynthesis of amino acids 113 乙醛酸和二羧酸代谢
    Glyoxylate and dicarboxylate metabolism
    36
    乙醛酸和二羧酸代谢
    Glyoxylate and dicarboxylate metabolism
    42 光合作用-天线蛋白
    Photosynthesis - antenna proteins
    16
    甘氨酸、丝氨酸和苏氨酸代谢
    Glycine, serine and threonine metabolism
    39 光合生物的碳代谢
    Carbon fixation in photosynthetic organisms
    33
    氧化磷酸化 Oxidative phosphorylation 63 光合作用 Photosynthesis 32
    柠檬酸循环(TCA循环)
    Citrate cycle (TCA cycle)
    33 甘氨酸、丝氨酸和苏氨酸代谢
    Glycine, serine and threonine metabolism
    32
    光合作用 Photosynthesis 40 丙氨酸、天冬氨酸和谷氨酸代谢
    Alanine, aspartate and glutamate metabolism
    23
    光合作用-天线蛋白
    Photosynthesis - antenna proteins
    16 精氨酸生物合成 Arginine biosynthesis 17
    丁酸代谢 Butanoate metabolism 14 莨菪烷、哌啶和吡啶生物碱生物合成
    Tropane, piperidine and pyridine alkaloid biosynthesis
    9
    磷酸戊糖途径 Pentose phosphate pathway 31 2-氧代羧酸代谢
    2-Oxocarboxylic acid metabolism
    22
    R1 vs S1 丙酮酸代谢 Pyruvate metabolism 28
    核糖体 Ribosome 50 烟酸和烟酰胺代谢
    Nicotinate and nicotinamide metabolism
    11
    光合作用-天线蛋白
    Photosynthesis -antenna proteins
    9
    下载: 导出CSV
  • [1] 吕银花. 高海拔地区青稞田间主要杂草及其防除 [J]. 中国农业信息, 2014, (24):99−100.

    LV Y H. Main weeds in highland barley field at high altitude and their control [J]. China Agricultural Information, 2014(24): 99−100. (in Chinese)
    [2] 闫栋, 罗振华, 胡有良, 等. 不同除草剂对青稞田野燕麦的防除及对青稞生长的影响 [J]. 生物技术通报, 2017, 33(9):166−171.

    YAN D, LUO Z H, HU Y L, et al. Effects of different herbicides on weed control and the growth, yield and quality of highland barley [J]. Biotechnology Bulletin, 2017, 33(9): 166−171. (in Chinese)
    [3] 周兰兰, 朱君, 桑安平, 等. 高海拔区青稞田除草剂组合筛选试验 [J]. 甘肃农业科技, 2022, 53(8):88−92.

    ZHOU L L, ZHU J, SANG A P, et al. Study on screening experiment of highland barley herbicides in Gannan autonomous prefecture [J]. Gansu Agricultural Science and Technology, 2022, 53(8): 88−92. (in Chinese)
    [4] 李亚东, 贺双, 田笑明, 等. 啶磺草胺对不同品种小麦生长发育的影响 [J]. 新疆农业科学, 2017, 54(4):682−693.

    LI Y D, HE S, TIAN X M, et al. Effects of pyroxsulam on growth and development of different varieties of wheat [J]. Xinjiang Agricultural Sciences, 2017, 54(4): 682−693. (in Chinese)
    [5] 罗思荃, 曹轩, 刘乐, 等. 啶磺草胺与双氟磺草胺协同防除冬小麦田杂草效果及对小麦产量的影响 [J]. 杂草学报, 2022, 40(1):69−76.

    LUO S Q, CAO X, LIU L, et al. Cooperative control effect of pyroxsulam with florasulam on weeds and influence on the winter wheat yield [J]. Journal of Weed Science, 2022, 40(1): 69−76. (in Chinese)
    [6] 董雪. 不同小麦品种对除草剂啶磺草胺耐药性差异研究[D]. 石河子: 石河子大学, 2014.

    DONG X. Study on difference of pyroxsulam tolerance of various wheat varieties[D]. Shihezi: Shihezi University, 2014. (in Chinese)
    [7] 王丹丹. 不同小麦品种对甲基二磺隆等药剂的耐药性差异研究[D]. 泰安: 山东农业大学, 2019

    WANG D D. Study on the difference in herbicide tolerance of wheat varieties to mesosulfuron-methyl and other herbicides[D]. Taian: Shandong Agricultural University, 2019. (in Chinese)
    [8] 裴涛. 日本看麦娘(Alopecurus japonicas)对啶磺草胺的抗性研究[D]. 南京: 南京农业大学, 2015.

    PEI T. Study on resistance of Alopecurus japonicus to pyroxulam[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
    [9] 冯雨娟. 日本看麦娘(Alopecurus japonicus)对啶磺草胺的抗药性研究[D]. 南京: 南京农业大学, 2016.

    FENG Y J. Study on resistance of Alopecurus japonicus to pyroxsulam[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
    [10] 张宇翔, 朱亮, 魏有海. 不同青稞品种对7.5%啶磺草胺的耐药性分析 [J]. 青海大学学报, 2022, 40(2):14−19.

    ZHANG Y X, ZHU L, WEI Y H. Analysis of drug resistance of different Hordeum vulgare var nudum varieties to 7.5% pyroxsulam [J]. Journal of Qinghai University, 2022, 40(2): 14−19. (in Chinese)
    [11] PERTEA M, KIM D, PERTEA G M, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown [J]. Nature Protocols, 2016, 11(9): 1650−1667.
    [12] ANDERS S, HUBER W. Differential expression analysis for sequence count data [J]. Genome Biology, 2010, 11(10): R106.
    [13] BENJAMINI Y, HOCHBERG Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics [J]. Journal of Educational and Behavioral Statistics, 2000, 25(1): 60−83.
    [14] KANEHISA M, GOTO S. KEGG: Kyoto encyclopedia of genes and genomes [J]. Nucleic Acids Research, 2000, 28(1): 27−30.
    [15] 郭美俊. 谷子对除草剂抗性的生理特性及产量性状的影响[D]. 太谷: 山西农业大学, 2017.

    GUO M J. Effect of foxtail millet on physiological characteristics and yields characteristics of herbicides resistance[D]. Taigu: Shanxi Agricultural University, 2017. (in Chinese)
    [16] 田敏, 饶龙兵, 李纪元. 植物细胞中的活性氧及其生理作用 [J]. 植物生理学通讯, 2005, 41(2):235−241.

    TIAN M, RAO L B, LI J Y. Reactive oxygen species (ROS) and its physiological functions in plant cells [J]. Plant Physiology Communications, 2005, 41(2): 235−241. (in Chinese)
    [17] 王荣华, 石雷, 汤庚国, 等. 渗透胁迫对蒙古冰草幼苗保护酶系统的影响 [J]. 植物学通报, 2003, 38(3):330−335.

    WANG R H, SHI L, TANG G G, et al. Effect of osmotic stress on activities of protective enzymes system in Agropyron mongolicum seedling [J]. Chinese Bulletin of Botany, 2003, 38(3): 330−335. (in Chinese)
    [18] 袁帅. 水稻与大豆对氯磺隆、胺苯磺隆胁迫的生化响应[D]. 扬州: 扬州大学, 2009

    YUAN S. The biochemical responses of rice and soybean to stress of chlorsulfuron and ethametsulfuron[D]. Yangzhou: Yangzhou University, 2009. (in Chinese)
    [19] RADWAN D E M. Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L. ) leaves [J]. Pesticide Biochemistry and Physiology, 2012, 102(2): 182−188.
    [20] KARUPPANAPANDIAN T, WANG H W, PRABAKARAN N, et al. 2, 4-dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles [J]. Plant Physiology and Biochemistry, 2011, 49(2): 168−177.
    [21] 刘长乐, 郭月, 李芳芳, 等. 抗ALS类除草剂作物种质创制与利用研究进展 [J]. 植物遗传资源学报, 2022, 23(2):333−345.

    LIU C L, GUO Y, LI F F, et al. Advances in development and utilization of crop germplasm resources resistant to ALS herbicides [J]. Journal of Plant Genetic Resources, 2022, 23(2): 333−345. (in Chinese)
    [22] YUAN J S, TRANEL P J, STEWART C N Jr. Non-target-site herbicide resistance: A family business [J]. Trends in Plant Science, 2007, 12(1): 6−13.
    [23] 李向楠, 吴振兴, 陈坚剑, 等. 耐性和敏感两种类型鲜食玉米苗期施用硝磺草酮后的转录组分析 [J]. 农药学学报, 2021, 23(5):893−904.

    LI X N, WU Z X, CHEN J J, et al. RNA-Seq transcriptome analysis of fresh-eating maizes sensitive and tolerant to mesotrione in the seedling stage [J]. Chinese Journal of Pesticide Science, 2021, 23(5): 893−904. (in Chinese)
    [24] 董雪, 梁友, 田笑明, 等. 不同小麦品种对啶磺草胺的耐药性差异 [J]. 新疆农业科学, 2014, 51(8):1474−1481.

    DONG X, LIANG Y, TIAN X M, et al. Difference of tolerance of different wheat varieties to pyroxsulam [J]. Xinjiang Agricultural Sciences, 2014, 51(8): 1474−1481. (in Chinese)
    [25] 谢娜, 毕亚玲, 李凌绪, 等. 不同玉米品种对氯吡嘧磺隆的耐药性差异及其机制 [J]. 植物保护学报, 2012, 39(6):567−572.

    XIE N, BI Y L, LI L X, et al. Difference of tolerance and mechanism of various maize varieties to halosulfuron-methyl [J]. Journal of Plant Protection, 2012, 39(6): 567−572. (in Chinese)
    [26] 郭玉莲, 陶波, 翟喜海, 等. 不同玉米品种对氯嘧磺隆的耐药性差异及其机制 [J]. 植物保护学报, 2009, 36(4):366−370. doi: 10.3321/j.issn:0577-7518.2009.04.015

    GUO Y L, TAO B, ZHAI X H, et al. Drug resistance and mechanism between different maize varieties to chlorimuron-ethyl [J]. Journal of Plant Protection, 2009, 36(4): 366−370. (in Chinese) doi: 10.3321/j.issn:0577-7518.2009.04.015
    [27] 马春英. 不同品种谷子对单嘧磺隆和扑草净耐药性差异的生理机制[D]. 太谷: 山西农业大学.

    MA C Y. Physiological resistance mechanism of foxtail millet with different herbicide-resistance to monosulfuron and prometryn[D]. Taigu: Shanxi Agricultural University . (in Chinese)
    [28] 毕亚玲, 李君君, 戴玲玲, 等. 杂草对除草剂非靶标抗性机理研究进展 [J]. 植物保护, 2020, 46(5):1−5,12.

    BI Y L, LI J J, DAI L L, et al. Research advances in non-target resistance mechanisms of weeds to herbicides [J]. Plant Protection, 2020, 46(5): 1−5,12. (in Chinese)
    [29] 王正贵, 周立云, 郭文善, 等. 除草剂对小麦光合特性及叶绿素荧光参数的影响 [J]. 农业环境科学学报, 2011, 30(6):1037−1043.

    WANG Z G, ZHOU L Y, GUO W S, et al. Effects of herbicides on photosynthesis and chlorophyll fluorescence parameters in wheat leaves [J]. Journal of Agro-Environment Science, 2011, 30(6): 1037−1043. (in Chinese)
    [30] 侯丽丽, 邱毅, 孙惠敏, 等. 除草剂草甘膦对葡萄光合作用及叶绿素荧光特性的影响 [J]. 北方园艺, 2018, (13):57−62.

    HOU L L, QIU Y, SUN H M, et al. Effects of herbicide glyphosate on photosynthetic and chlorophyll fluorescence characteristics of grapes [J]. Northern Horticulture, 2018(13): 57−62. (in Chinese)
    [31] 高贞攀, 郭平毅, 原向阳, 等. 苯磺隆和单嘧磺隆对张杂谷10号光合特性及产量构成的影响 [J]. 中国农业大学学报, 2015, 20(6):36−45. doi: 10.11841/j.issn.1007-4333.2015.06.05

    GAO Z P, GUO P Y, YUAN X Y, et al. Effects of Tribenuron-methyl and Monosulfuron application on photosynthetic characteristics and yield of Zhangza Gu 10 [J]. Journal of China Agricultural University, 2015, 20(6): 36−45. (in Chinese) doi: 10.11841/j.issn.1007-4333.2015.06.05
    [32] 宋慧, 王涛, 邢璐, 等. 不同谷子品种喷施咪唑啉酮除草剂后的转录组分析[J/OL]. 作物杂志, 2023: 1-12. (2023-03-31). https://kns.cnki.net/kcms/detail/11.1808.s.20230330.1542.009.html.

    SONG H, WANG T, XING L, et al. Transcriptome analysis of different foxtail millet(Setaria italica L.) varieties treated with imazapic herbicide[J/OL]. Crops, 2023: 1-12. (2023-03-31). https://kns.cnki.net/kcms/detail/11.1808.s.20230330.1542.009.html.(in Chinese)
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  126
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 修回日期:  2024-02-09
  • 网络出版日期:  2024-05-08
  • 刊出日期:  2024-04-28

目录

    /

    返回文章
    返回