Drought-resistance of Chestnut Seedlings Affected by Foliar Quercetin Spray
-
摘要:
目的 探明外源槲皮素(Quercetin, Q)提高板栗苗耐旱性的适宜喷施浓度及其生理机制。 方法 以燕宝(YB)板栗苗为试材,通过盆栽控水的方法,以重度干旱胁迫CK1和正常管理CK2为对照,研究在重度干旱胁迫下喷施不同浓度[600 μmol·L−1(QD1)、1200 μmol·L−1(QD2)、1800 μmol·L−1(QD3)和2000 μmol·L−1(QD4)、3000μmol·L−1(QD5)]槲皮素对板栗幼苗叶绿素含量、抗氧化酶活性、丙二醛(MDA)和黄酮醇含量的影响。 结果 与同处于重度干旱胁迫下未经槲皮素喷施处理的CK1相比,5种不同浓度槲皮素喷施处理均能显著提高板栗叶片叶绿素含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、过氧化物酶(POD)活性和黄酮醇含量,同时显著降低了板栗叶片丙二醛(MDA)含量,但喷施后板栗苗的状态仍不能恢复到正常管理的CK2。通过主成分分析及隶属函数法,得出QD1、QD2、QD3、QD4、QD5各处理的平均抗旱性度量值分别为0.735、0.641、0.738、1.389、0.828。其中2000 μmol·L−1(QD4)槲皮素浓度处理效果更显著。 结论 外源施加槲皮素可以通过提高板栗幼苗抗氧化酶活性、叶绿素含量,减缓MDA增加速度,减缓细胞膜质过氧化的速度,以减轻干旱对板栗叶片细胞的伤害,从而提高板栗幼苗耐旱性,且以2000 μmol·L−1(QD4)槲皮素浓度处理效果最好。 Abstract:Objective Physiological mechanism and application concentration of foliar quercetin (Q) spray in improving drought resistance of chestnut seedlings were studied. Method In an irrigation-controlled pot experiment, seedlings of Yanbao chestnut (YB) were sprayed Q solutions of concentrations at 600 μmol·L−1 (QD1), 1 200 μmol·L−1 (QD2), 1 800 μmol·L−1 (QD3), 2 000 μmol·L−1 (QD4), and 3 000 μmol·L−1 (QD5), along with one non-spray control under drought (CK1) and another under normal watering condition (CK2). Contents of chlorophyll, malondialdehyde (MDA), and flavonols as well as antioxidant activities of the seedlings were determined. Result The foliar spray of Q significantly elevated the contents of chlorophyll and flavonols as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) and reduced MDA in the seedling leaves over those under CK1, but not to the levels under CK2. The principal component and membership function analyses showed the average drought resistance of QD1, QD2, QD3, QD4, and QD5 to be 0.735, 0.641, 0.738, 1.389, and 0.828, respectively, indicating a superior treatment effect of 2,000μmol Q·L−1. Conclusion Spraying Q solutions on the chestnut seedlings appeared to mitigate cellular damages induced by drought stress. The treatment raised the antioxidant enzyme activities and chlorophyll content while reduced MDA that retarded cell membrane peroxidation on the leaves with the greatest effect displayed by the application of Q at a concentration of 2 000 μmol·L−1. -
Key words:
- Chestnut /
- quercetin /
- drought stress /
- membership function method
-
表 1 干旱胁迫下喷施槲皮素后板栗叶片叶绿素含量的变化
Table 1. Chlorophyll content in chestnut seedling leaves under drought after foliar Q spray (单位:mg·g−1)
处理
Treatment时间 Time 0 d 5 d 10 d CK1 3.53±0.01cd 3.19±0.03e 1.50±0.03f CK2 5.12±0.07a 5.13±0.04a 5.30±0.06a QD1 3.49±0.02 de 4.71±0.04 d 4.15±0.10d QD2 3.66±0.01b 4.91±0.05c 4.15±0.01d QD3 3.63±0.03b 5.03±0.02b 4.26±0.01c QD4 3.44±0.01e 5.05±0.01b 4.75±0.01b QD5 3.57±0.01c 4.64±0.01 d 4.05±0.01e 不同小写字母表示同列数值之间差异显著(P<0.01),下同。
Data with different lowercase letters on same column indicate significant differences (P<0.01). Same for below.表 2 干旱胁迫下喷施槲皮素后板栗叶片MDA含量的变化
Table 2. MDA content in chestnut seedling leaves under drought after foliar Q spray (单位:nmol·g−1)
处理
Treatment时间 Time 0 d 5 d 10 d CK1 63.12±1.23d 131.28±2.95a 157.29±7.23a CK2 37.50±2.13e 39.90±1.04 d 41.28±0.42e QD1 68.71±6.09cd 91.07±1.72b 107.50±0.44b QD2 73.70±0.32abc 87.20±2.23bc 102.17±1.26bc QD3 76.63±3.74a 86.22±1.26c 97.65±1.79cd QD4 74.95±0.53ab 84.45±2.12c 93.22±1.49d QD5 69.75±0.32bc 88.41±0.74bc 101.31±1.37bc 表 3 干旱胁迫下喷施槲皮素后板栗叶片SOD活性的变化
Table 3. SOD activity in chestnut seedling leaves under drought after foliar Q spray (单位:U·g−1)
处理
Treatment时间 Time 0 d 5 d 10 d CK1 1157.97±36.93b 1470.95±111.96d 990.53±13.67e CK2 2034.94±61.22a 2107.45±37.58a 2054.98±42.42a QD1 1152.45±55.34b 1689.88±35.16c 1322.79±33.30d QD2 1167.31±42.48b 1743.98±24.17c 1447.38±49.93c QD3 1080.96±55.52b 1739.51±16.11c 1431.06±21.96c QD4 1108.46±40.92b 1907.68±31.35b 1522.91±33.64b QD5 1133.02±21.24b 1753.36±44.91c 1320.27±35.56 d 表 4 干旱胁迫下喷施槲皮素后板栗叶片POD活性的变化
Table 4. POD activity in chestnut seedling leaves under drought after foliar Q spray (单位:U·g−1)
处理
Treatment时间 Time 0 d 5 d 10 d CK1 860.00±81.65b 893.33±57.35e 600.00±43.20f CK2 1660.00±101.98a 1646.67±24.94a 1746.67±92.86a QD1 846.67±67.99b 1066.67±9.43 de 760.00±28.28ef QD2 886.67±33.99b 1113.33±89.94d 913.33±131.99de QD3 893.33±77.17b 1346.67±108.73bc 1153.33±33.99bc QD4 900.00±28.28b 1506.67±133.00ab 1300.0071.18b QD5 786.67±33.99b 1206.67±73.64cd 1040.00±81.65cd 表 5 干旱胁迫下喷施槲皮素后板栗叶片CAT活性的变化
Table 5. CAT activity in chestnut seedling leaves under drought after foliar Q spray (单位:nmol·min−1·g−1)
处理
Treatment时间 Time 0 d 5 d 10 d CK1 164.98±3.20b 183.06±5.54d 133.34±20.96d CK2 316.40±17.80a 318.66±29.29a 305.10±5.54a QD1 162.72±5.54b 244.08±14.65bc 207.92±22.37bc QD2 164.98±20.96b 223.74±5.54c 176.28±19.96c QD3 155.94±5.54b 219.22±3.20c 178.54±8.46c QD4 158.20±6.39b 262.16±25.57b 212.44±13.93b QD5 166.34±2.79b 228.26±8.46bc 196.62±9.59bc 表 6 干旱胁迫下喷施槲皮素后板栗叶片黄酮醇含量的变化
Table 6. Flavonols content in chestnut seedling leaves under drought after foliar Q spray (单位:mg·g−1)
处理
Treatment时间 Time 0 d 5 d 10 d CK1 2.00±0.03a 2.74±0.25d 2.22±0.05b CK2 1.07±0.15b 1.09±0.12e 1.10±0.02c QD1 1.95±0.20a 2.97±0.18cd 2.55±0.21ab QD2 1.96±0.08a 3.24±0.21bc 2.56±0.03ab QD3 1.99±0.08a 3.15±0.19bcd 2.36±0.17ab QD4 1.86±0.17a 3.48±0.29ab 2.71±0.07a QD5 1.79±0.12a 3.86±0.04a 2.60±0.36a 表 7 干旱胁迫下外源喷施槲皮素5 d、10 d的主成分系数、特征值及贡献率
Table 7. Principal component coefficients, characteristic values, and contribution rates on chestnut seedlings under drought after 5 d and 10 d foliar Q spray
时间
Time主成分
Component叶绿素含量
X1MDA含量
X2SOD活性
X3POD活性
X4CAT活性
X5黄酮醇含量
X6特征值
Eigenvalues贡献率
Contribution rate/%累积贡献率
Cumulative contribution rate/%5 d 1 0.955 0.954 −0.930 0.761 0.519 0.305 3.629 60.478 60.478 2 0.002 0.230 0.145 −0.639 0.269 0.855 1.287 21.446 81.923 10 d 1 0.498 −0.486 0.467 0.449 0.177 0.254 3.642 60.705 60.705 2 0.112 0.240 −0.220 −0.241 0.687 0.592 1.655 27.582 88.287 表 8 各处理的抗旱性度量值及综合排序
Table 8. Membership function values and comprehensive rankings on drought resistance of chestnut seedlings by various treatments
处理
Treatment5 d抗旱性
度量值
5-day drought-
tolerance value10 d抗旱性
度量值
10-day drought-
tolerance value平均抗旱性
度量值
Drought-
tolerance
value排序
OrderQD1 0.927 0.544 0.735 4 QD2 0.711 0.570 0.641 5 QD3 0.855 0.621 0.738 3 QD4 0.961 1.817 1.389 1 QD5 0.983 0.672 0.828 2 -
[1] RODRÍGUEZ-FLORES M S, ESCUREDO O, SEIJO M C, et al. Phenolic profile of Castanea bee pollen from the northwest of the Iberian peninsula [J]. Separations, 2023, 10(4): 270. doi: 10.3390/separations10040270 [2] ZHANG S, WANG L T, FU Y J, et al. Bioactive constituents, nutritional benefits and woody food applications of Castanea mollissima: A comprehensive review [J]. Food Chemistry, 2022, 393: 133380. doi: 10.1016/j.foodchem.2022.133380 [3] 刘晓书, 刘芳, 张俊. 京津冀地区板栗产业布局及前景分析 [J]. 中国果树, 2022, (2):99−102.LIU X S, LIU F, ZHANG J. Layout and prospect analysis of chestnut industry in Beijing-Tianjin-Hebei Region [J]. China Fruits, 2022(2): 99−102. (in Chinese) [4] WANG Y P, LIU C Y, FANG Z, et al. A review of the stress resistance, molecular breeding, health benefits, potential food products, and ecological value of Castanea mollissima [J]. Plants, 2022, 11(16): 2111. doi: 10.3390/plants11162111 [5] KUPPUSAMY A, ALAGARSWAMY S, KARUPPUSAMI K M, et al. Melatonin enhances the photosynthesis and antioxidant enzyme activities of mung bean under drought and high-temperature stress conditions [J]. Plants, 2023, 12(13): 2535. doi: 10.3390/plants12132535 [6] LI P C, YANG X Y, WANG H M, et al. Metabolic responses to combined water deficit and salt stress in maize primary roots [J]. Journal of Integrative Agriculture, 2021, 20(1): 109−119. doi: 10.1016/S2095-3119(20)63242-7 [7] ULUSOY H G, SANLIER N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(19): 3290−3303. doi: 10.1080/10408398.2019.1683810 [8] NISHIMURO H, OHNISHI H, SATO M, et al. Estimated daily intake and seasonal food sources of quercetin in Japan [J]. Nutrients, 2015, 7(4): 2345−2358. doi: 10.3390/nu7042345 [9] 柳苗苗, 蔡伟建, 张斌斌, 等. 槲皮素对草莓生长发育、光合和生理生化特性影响的综合评价[J]. 江苏农业科学, 2022, 50(21): 165−172.LIU M M, CAI W J, ZHANG B B, et al. Comprehensive evaluation on effects of quercetin on growth, photosynthesis, physiological and biochemical characteristics of strawberry[J]. Jiangsu Agricultural Sciences, 2022, 50(21): 165−172. (in Chinese) [10] PARVIN K, HASANUZZAMAN M, BHUYAN M H M B, et al. Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems [J]. Plants, 2019, 8(8): 247. doi: 10.3390/plants8080247 [11] 庄武豹, 姚康有, 杨妙贤, 等. 槲皮素对猕猴桃高温强光伤害的缓解作用 [J]. 园艺学报, 2009, 36(6):787−792. doi: 10.3321/j.issn:0513-353X.2009.06.002ZHUANG W B, YAO K Y, YANG M X, et al. Effects of quercetin to alleviate injury of kiwifruit plants under high temperature and intensive sunlight [J]. Acta Horticulturae Sinica, 2009, 36(6): 787−792. (in Chinese) doi: 10.3321/j.issn:0513-353X.2009.06.002 [12] AGATI G, BIRICOLTI S, GUIDI L, et al. The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves [J]. Journal of Plant Physiology, 2011, 168(3): 204−212. doi: 10.1016/j.jplph.2010.07.016 [13] 李国庆. 黄酮醇在小麦抗旱节水中的功能分析[D]. 济南: 山东大学, 2021.LI G Q. Functional analysis of flavonol in drought resistance and water saving of wheat[D]. Jinan: Shandong University, 2021. (in Chinese) [14] YANG J L, ZHANG L X, JIANG L, et al. Quercetin alleviates seed germination and growth inhibition in Apocynum venetum and Apocynum pictum under mannitol-induced osmotic stress [J]. Plant Physiology and Biochemistry:PPB, 2021, 159: 268−276. doi: 10.1016/j.plaphy.2020.12.025 [15] 武燕奇, 郭素娟. 10个板栗砧木品种(系)抗旱性综合评价 [J]. 东北农业大学学报, 2016, 47(10):9−16. doi: 10.3969/j.issn.1005-9369.2016.10.002WU Y Q, GUO S J. Comprehensive evaluation on drought resistance of 10 Chinese chestnut varieties(strain) [J]. Journal of Northeast Agricultural University, 2016, 47(10): 9−16. (in Chinese) doi: 10.3969/j.issn.1005-9369.2016.10.002 [16] 邹琦等, 植物生理生化实验指导[M]. 北京: 中国农业出版社, 1999: 36−38. [17] 张碧茹, 米俊珍, 赵宝平, 等. 外源γ-氨基丁酸缓解燕麦幼苗盐碱胁迫的生理效应 [J]. 麦类作物学报, 2024, 44(2):222−229.ZHANG B R, MI J Z, ZHAO B P, et al. Physiological effects of exogenous gamma-aminobutyric acid on salt-alkali stress in oat seedlings [J]. Journal of Triticeae Crops, 2024, 44(2): 222−229. (in Chinese) [18] SAITO K, YONEKURA-SAKAKIBARA K, NAKABAYASHI R, et al. The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity [J]. Plant Physiology and Biochemistry:PPB, 2013, 72: 21−34. doi: 10.1016/j.plaphy.2013.02.001 [19] CROFT H, CHEN J M, WANG R, et al. The global distribution of leaf chlorophyll content [J]. Remote Sensing of Environment, 2020, 236: 111479. doi: 10.1016/j.rse.2019.111479 [20] MORK-JANSSON A E, EICHACKER L A. A strategy to characterize chlorophyll protein interaction in LIL3 [J]. Plant Methods, 2019, 15: 1. doi: 10.1186/s13007-018-0385-5 [21] YANG X Y, LU M Q, WANG Y F, et al. Response mechanism of plants to drought stress [J]. Horticulturae, 2021, 7(3): 50. doi: 10.3390/horticulturae7030050 [22] MARIA H C D.Drought stress and reactive oxygen species: Production, scavenging and signaling [J]. Plant Signaling & Behavior, 2008, 3(3): 156−165. [23] ANELIA G D, EMILIA L A. Damage and protection of the photosynthetic apparatus from UV-B radiation. II. Effect of quercetin at different pH[J]. Journal of Plant Physiology, 2015, 184: 98-105. DOI: 10.1016/j.jplph.2015.06.008 [24] 曹运琳, 邢梦云, 徐昌杰, 等. 植物黄酮醇生物合成及其调控研究进展 [J]. 园艺学报, 2018, 45(1):177−192.CAO Y L, XING M Y, XU C J, et al. Biosynthesis of flavonol and its regulation in plants [J]. Acta Horticulturae Sinica, 2018, 45(1): 177−192. (in Chinese)