Application of Bacillus subtilis B2-GFP to Promote Growth of Sweet Pepper Seedlings
-
摘要:
目的 筛选能促进甜椒幼苗生长的枯草芽孢杆菌B2-GFP菌株发酵液适宜浓度,为研发菌肥作用于蔬菜提供依据。 方法 以甜椒硕源808为材料,设置枯草芽孢杆菌B2-GFP菌株发酵液T1(1×105 CFU·mL−1)、T2(1×106 CFU·mL−1)、T3(1×107 CFU·mL−1)、T4(1×108 CFU·mL−1)4个浓度梯度处理,每隔7 d向植株浇灌菌株发酵液,连续浇灌3次,每次每株浇灌5 mL,21 d时测定甜椒幼苗生长指标、生物量积累、叶片光合特性、叶绿素荧光参数、根系抗氧化酶活性、根系形态建成及根系活力指标。 结果 与对照相比,不同浓度枯草芽孢杆菌B2-GFP菌株发酵液可提高甜椒株高、叶面积、叶绿素含量、植株生物量,以1×106 CFU·mL−1的增幅最大。同时,该浓度显著提高了叶片蒸腾速率(Tr)、气孔导度(Gs)、最大荧光(Fm)、PSⅡ实际光化学效率(ФPSⅡ)和光化学荧光猝灭系数(qP),降低了胞间CO2浓度(Ci)和叶绿素基础荧光(Fo);提高甜椒根系过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)活性及根系活力。 结论 在甜椒移栽后浇灌1×106 CFU·mL−1B2-GFP菌株发酵液可促进甜椒植株生长和根系形态建成,增强叶片光合能力,提高生物量积累、根系抗氧化酶活性和根系活力。 Abstract:Objective Effects of applying Bacillus subtilis B2-GFP culture broth on the growth and physiology of sweet pepper seedlings were studied. Methods In a pot experiment, seedlings of sweet pepper Shuoyuan 808 were treated with B. subtilis B2-GFP culture broths at the concentrations of 1×105 CFU·mL−1 (T1), 1×106 CFU·mL−1 (T2), 1×107 CFU·mL−1 (T3), and 1×108 CFU·mL−1 (T4), along with non-treatment control (CK). The transplanted sweet pepper seedlings were given 5 mL 1×106CFU·mL−1 B2-GFP culture broth every 7 d for 3 times. Growth index, biomass accumulation, leaf photosynthesis, and chlorophyll fluorescence parameters as well as antioxidant enzyme activities, morphological formation, and root vitality of the plants were monitored at 21 d. Results Application of the B2-GFP culture broth increased the plant height and biomass as well as the leaf area and chlorophyll content over CK. The greatest effect was observed under T2, which also accentuated the leaf transpiration rate (Tr), stomatal conductance (Gs), maximum fluorescence (Fm), photosystem II potential Activity (ФPSⅡ), and photochemical fluorescence quenching coefficient (qP) as well as the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO) in the roots but reduced the intercellular CO2 concentration (Ci) and chlorophyll basic fluorescence (Fo). Conclusion When the transplanted sweet pepper seedlings were given 1×106 CFU·mL−1 B2-GFP culture broth, all monitored indicators on the plant growth and root development including leaf photosynthetic parameters and biomass and root antioxidant enzymes activities and vitality were significantly improved in 3 weeks. -
Key words:
- Bacillus subtilis /
- sweet pepper /
- growth /
- physiology /
- photosynthesis
-
表 1 枯草芽孢杆菌B2-GFP菌株发酵液对甜椒生长指标的影响
Table 1. Effect of B2-GFP culture broth application on growth of sweet pepper seedlings
处理
Treatment株高
Plant height/cm茎粗
Stem diameter/mm叶面积
Leaf area/cm2叶绿素相对含量
SPADCK 11.90±0.10 d 4.05±0.20 ab 15.79±0.55 c 45.69±0.26 b T1 13.60±0.24 b 3.94±0.10 bc 18.07±1.09 b 47.42±0.79 ab T2 14.58±0.27 a 4.35±0.20 a 20.62±1.16 a 48.12±1.09 a T3 12.98±0.26 c 3.53±0.20 d 18.06±1.19 b 47.67±0.82 ab T4 12.10±0.17 d 3.60±0.25 cd 16.69±0.88 bc 47.58±1.54 ab 同列不同小写字母表示在0.05水平的差异显著性。下表同。
Data with different lowercase letters on same column indicate significant differences at P<0.05. Same for below.表 2 枯草芽孢杆菌B2-GFP菌株发酵液对甜椒叶片叶绿素荧光参数的影响
Table 2. Effect of B2-GFP culture broth on leaf chlorophyll fluorescence parameters of sweet pepper seedlings
处理
Treatment叶绿素基础
荧光Fo最大荧光
FmPSⅡ最大光能
转换效率Fv/FmPSⅡ实际光
化学效率ΦPSⅡ光化学荧光
猝灭系数qP非光化学
猝灭效率NPQCK 3995±140 a 19308±1632 b 0.825±0.004 abc 0.520±0.008 bc 0.67±0.006 b 1.54±0.13 a T1 3811±95 ab 20334±1103 ab 0.827±0.006 ab 0.533±0.012 ab 0.69±0.006 a 1.57±0.25 a T2 3576±197 b 22714±1638 a 0.831±0.001 a 0.539±0.006 a 0.70±0.012 a 1.81±0.16 a T3 3818±163 ab 22610±496 a 0.820±0.002 c 0.525±0.004 abc 0.65±0.015 c 1.94±0.08 a T4 3822±146 ab 21450±2207 ab 0.822±0.001 bc 0.511±0.014 c 0.64±0.010 c 1.69±0.40 a 表 3 枯草芽孢杆菌B2-GFP菌株发酵液对甜椒根系生长特性的影响
Table 3. Effect of B2-GFP culture broth on growth of sweet pepper seedling roots
处理
Treatment总根长
Length/cm根总表面积
Surf area/cm2根系总体积
Root volume/cm3根尖数
Tips分叉数
ForksCK 435.24±41.12 b 55.16±5.93 b 0.642±0.092 bc 1737±175 b 2024±651 ab T1 498.32±57.70 ab 74.20±11.64 a 0.757±0.075 ab 1401±182 b 1802±405 ab T2 564.47±48.07 a 70.96±9.45 ab 0.881±0.110 a 2179±273 a 2607±768 a T3 449.93±85.85 b 53.31±7.19 b 0.631±0.134 bc 1553±112 b 2039±793 ab T4 388.92±35.59 b 53.39±9.88 b 0.543±0.097 c 1543±218 b 1405±426 b -
[1] KAUR R, KAUR K, SIDHU J S. Drying kinetics, chemical, and bioactive compounds of yellow sweet pepper as affected by processing conditions [J]. Journal of Food Processing and Preservation, 2022, 46(3): e16330. [2] 项朝阳, 肖小勇, 宋长鸣. 我国蔬菜产业当前的新特点、新问题及对策建议 [J]. 中国蔬菜, 2019, (1):1−6.XIANG Z Y, XIAO X Y, SONG C M. New characteristics, problems and countermeasures of vegetable industry in China [J]. China Vegetables, 2019(1): 1−6. (in Chinese) [3] 张静. 露地栽培彩色甜椒霜霉病综合防治技术 [J]. 农村新技术, 2023, (7):24−26. doi: 10.3969/j.issn.1002-3542.2023.07.012ZHANG J. Integrated control techniques of downy mildew of colored sweet pepper cultivated in open field [J]. New Rural Technology, 2023(7): 24−26. (in Chinese) doi: 10.3969/j.issn.1002-3542.2023.07.012 [4] HU W Y, ZHANG Y X, HUANG B, et al. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies [J]. Chemosphere, 2017, 170: 183−195. [5] 付丽军, 张爱敏, 王向东, 等. 生物有机肥改良设施蔬菜土壤的研究进展 [J]. 中国土壤与肥料, 2017, (3):1−5. doi: 10.11838/sfsc.20170301FU L J, ZHANG A M, WANG X D, et al. Research progress of bio-organic fertilizer in improving greenhouse vegetable soil [J]. Soil and Fertilizer Sciences in China, 2017(3): 1−5. (in Chinese) doi: 10.11838/sfsc.20170301 [6] BASU A, PRASAD P, DAS S N, et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects [J]. Sustainability, 2021, 13(3): 1140. [7] SARTI G C, GALELLI M E, ARREGHINI S, et al. Inoculation with biofilm of Bacillus subtilis promotes the growth of Lactuca sativa [J]. Sustainability, 2023, 15(21): 15406. [8] 杨兴有, 丁安明, 余祥文, 等. 烟草青枯病拮抗菌TBWR1的筛选鉴定及防病促生能力 [J]. 贵州农业科学, 2023, 51(10):58−65. doi: 10.3969/j.issn.1001-3601.2023.10.007YANG X Y, DING A M, YU X W, et al. Screening and identification of antagonistic strain TBWR1 against tobacco bacterial wilt and its disease prevention and growth promotion ability [J]. Guizhou Agricultural Sciences, 2023, 51(10): 58−65. (in Chinese) doi: 10.3969/j.issn.1001-3601.2023.10.007 [9] 胡晨曦, 肖洒, 陈刚, 等. 枯草芽孢杆菌悬浮种衣剂对辣椒幼苗生长和生理特性的影响 [J]. 福建农业学报, 2021, 36(9):1017−1024. doi: 10.3969/j.issn.1008-0384.2021.9.fjnyxb202109004HU C X, XIAO S, CHEN G, et al. Effects of seed-coating Bacillus subtilis suspension on growth and physiology of chili pepper seedlings [J]. Fujian Journal of Agricultural Sciences, 2021, 36(9): 1017−1024. (in Chinese) doi: 10.3969/j.issn.1008-0384.2021.9.fjnyxb202109004 [10] 朱孔艳, 韩升才, 赵榕, 等. 向日葵籽粒拮抗核盘菌的内生菌分离筛选及鉴定 [J]. 作物杂志, 2023, (5):280−284.ZHU K Y, HAN S C, ZHAO R, et al. Isolation and identification of endophytes from sunflower seeds [J]. Crops, 2023(5): 280−284. (in Chinese) [11] 胡金雪, 樊建英, 相丛超, 等. 枯草芽孢杆菌对马铃薯的促生防病效应 [J]. 中国瓜菜, 2023, 36(10):121−128. doi: 10.3969/j.issn.1673-2871.2023.10.017HU J X, FAN J Y, XIANG C C, et al. Effects of Bacillus subtilis on growth promotion and disease control of potato [J]. China Cucurbits and Vegetables, 2023, 36(10): 121−128. (in Chinese) doi: 10.3969/j.issn.1673-2871.2023.10.017 [12] SONG J, WANG D, HAN D F, et al. Characterization of the endophytic Bacillus subtilis KRS015 strain for its biocontrol efficacy against Verticillium dahliae [J]. Phytopathology, 2024, 114(1): 61−72. [13] RATHOD K, RANA S, DHANDHUKIA P, et al. Marine Bacillus subtilis as an effective biocontrol agent against Fusarium oxysporum f. sp. ciceris [J]. European Journal of Plant Pathology, 2023, 167(4): 759−770. [14] LI Y, ZHANG X, HE K, et al. Isolation and identification of Bacillus subtilis LY-1 and its antifungal and growth-promoting effects [J]. Plants, 2023, 12(24): 4158. [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. [16] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant and Cell Physiology, 1981, 22(5): 867−880. [17] 石连旋, 颜宏. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2013. [18] 刘新. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2015. [19] 彭喜之, 王涛辉, 马珺怡, 等. 微生物菌剂对土壤酸碱性的改良研究[J]. 天津科技, 2021, 48(1):42-45, 48.PENG X Z, WANG T H, MA J Y, et al. Improvement of soil acidity and alkalinity by microbial agents[J]. Tianjin Science & Technology, 2021, 48(1): 42-45, 48. (in Chinese) [20] 杨璐, 周蓓蓓, 侯亚玲, 等. 枯草芽孢杆菌菌剂对盐胁迫下冬小麦生长与土壤水氮分布的影响 [J]. 排灌机械工程学报, 2021, 39(5):517−524.YANG L, ZHOU B B, HOU Y L, et al. Effects of Bacillus subtilis on growth of winter wheat and distribution of soil water and nitrogen under salt stress [J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(5): 517−524. (in Chinese) [21] 邱萌萌, 吴玉斌, 陆洪省. 枯草芽孢杆菌对土壤群落结构的影响 [J]. 南方农业, 2021, 15(3):179−181.QIU M M, WU Y B, LU H S. Effect of Bacillus subtilis on soil community structure [J]. South China Agriculture, 2021, 15(3): 179−181. (in Chinese) [22] 张照然, 何朋杰, 李兴玉, 等. 枯草芽孢杆菌XF-1对十字花科作物体内异硫氰酸苯乙酯含量的影响 [J]. 江西农业学报, 2021, 33(1):23−27.ZHANG Z R, HE P J, LI X Y, et al. Effects of Bacillus subtilis XF-1 on phenethyl isothiocyanate concent in cruciferous crops [J]. Acta Agriculturae Jiangxi, 2021, 33(1): 23−27. (in Chinese) [23] 甘金佳, 孙成荣, 尹华田, 等. 枯草芽孢杆菌可湿性粉剂防治西红柿青枯病的田间药效试验 [J]. 南方园艺, 2020, 31(6):38−41. doi: 10.3969/j.issn.1674-5868.2020.06.008GAN J J, SUN C R, YIN H T, et al. Field efficacy test of Bacillus subtilis wettable powder against tomato bacterial wilt [J]. Southern Horticulture, 2020, 31(6): 38−41. (in Chinese) doi: 10.3969/j.issn.1674-5868.2020.06.008