Soil Microbiome at Phyllostachys edulis Forest Affected by Application of Bioagent
-
摘要:
目的 探究复合微生物菌剂[产气肠杆菌(Enterobacter aerogenes)CT-B09-2、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)JL-B06和乙酸钙不动杆菌(Acinetobacter calcoaceticus)WYS-A01-1]对毛竹土壤细菌群落结构和多样性的影响。 方法 以毛竹(Phyllostachys edulis)实生幼苗为研究对象,采用灌根的方式施用复合微生物菌剂,30 d后采集毛竹幼苗根际与非根际土壤样本,测定土壤理化性质,提取土壤总DNA并进行16S rRNA高通量测序,分析复合微生物菌剂对土壤细菌群落结构和多样性的影响。 结果 复合微生物菌剂可以有效提升土壤中速效磷的含量,调控土壤pH,提高根际土壤中物质代谢和碳化合物分解相关的功能活性。毛竹根际与非根际土壤共检测出26门、65纲、158目、253科、448属、674种微生物,主要优势菌门包括变形菌门 Proteobacteria、拟杆菌门 Firmicutes、放线菌门 Actinobacteriota、酸杆菌门 Acidobacteriota、绿弯菌门 Chloroflexi等。施用复合微生物菌剂后,毛竹根际土壤微生物群落物种数目显著上升,非根际土壤样本无显著变化。 结论 复合微生物菌剂可以调节土壤矿质元素,改善土壤pH,调控细菌微生物群落组成。 Abstract:Objective Effect of application of a microbial agent on the microbiome in soil at a Phyllostachys edulis forest was analyzed. Method In a P. edulis forest, a microbial solution of Enterobacter aerogenes CT-B09-2, Bacillus amyloliquefaciens JL-B06, and Acinetobacter calcoaceticus WYS-A01-1 was applied by root irrigation onto the soil around the seedlings. Rhizosphere and non-rhizosphere soil samples at the spots were collected 30 d after the application for physical and chemical analyses. Total DNA in soil was extracted, and 16S rRNA high-throughput sequencing performed to dissect the microbial community structure and diversity. Results The applied bioagent effectively increased the available phosphorus, regulated the pH, and improved the functional activities related to material metabolism and decomposition of carbon compounds in the rhizosphere soil. There were 26 phyla, 65 classes, 158 orders, 253 families, 448 genera, and 674 species detected in the soil samples with Proteobacteria, Firmicutes, Actinobacteriota, Acidobacteriota, and Chloroflexi being the dominant phyla. The application significantly increased the number of species in the microbial community only in the rhizosphere soil. Conclusion Application of the mixed microbial cultures significantly and positively affected the mineral contents, pH, and microbial community in the rhizosphere soil at the bamboo forest. -
Key words:
- bioagent /
- Phyllostachys edulis /
- soil microbiome /
- diversity
-
图 1 样本稀释曲线和Venn图
A:稀释曲线;B:(a)复合微生物菌剂施用的根际土壤ASV对比;(b)复合微生物菌剂施用的非根际土壤ASV对比;(c)样本总体ASV对比。
Figure 1. Sample dilution curve and Venn diagram
A: dilution curve; B: (a) ASVs of rhizosphere soils treated with bioagent; (b) ASVs of non-rhizosphere soils treated with bioagent; (c) ASVs of total sample population.
表 1 样本编号对照表
Table 1. Sample codes
样本类型
Sample type分组
Group对照组毛竹根际土壤 E0 对照组毛竹非根际土壤 F0 复合微生物菌剂处理组毛竹根际土壤 E1 复合微生物菌剂处理组毛竹非根际土壤 F1 表 2 土壤理化性质测定结果
Table 2. Physiochemical properties of soil samples
样本
Sample有机质
OM/ (g·kg−1)速效磷
AP/(μmol·g−1)速效钾
AK/(mg·kg−1)全钾
TK/(g·kg−1)全氮
TN/(g·kg−1)全磷
TP/(mg·kg−1)速效氮
AN/(mg·kg−1)pH E0 20.81±0.01a 4.42±0.02c 329.12±0.02b 14.79±0.02b 0.97±0.02a 507.04±0.02b 86.34±0.01a 5.68±0.01d E1 7.67±0.01c 4.82±0.03a 196.71±0.01d 13.75±0.02c 0.75±0.03b 480.41±0.03c 43.03±0.02c 5.88±0.01c F0 17.84±0.01b 4.50±0.01b 341.53±0.03a 15.84±0.04a 0.99±0.01a 531.07±0.04a 68.96±0.04b 6.14±0.02b F1 7.01±0.01d 4.51±0.01b 261.03±0.04c 13.73±0.03c 0.77±0.02b 488.1±0.02c 47.05±0.03c 6.54±0.02a 图中数据为平均值±标准差;同列数据后不同小写字母表示不同处理间差异显著(P < 0.05)。表3同。
Data are mean±standard deviation; those with different lowercase letters indicate significant differences between treatments at P<0.05. Same for Table 3.表 3 Alpha 多样性指数
Table 3. Alpha diversity index
样本
Sample丰度指数
ACE查尔指数
Chao1香农指数
Shannon辛普森指数
SimpsonE0 479.84±32.70b 479.76±32.55b 5.74±0.11a 0.0048±0.001b E1 539.52±80.66a 539.20±80.37a 5.76±0.06a 0.0055±0.001b F0 493.95±96.69b 493.66±96.37b 5.67±0.19a 0.0054±0.001b F1 489.88±127.07b 489.25±126.73b 5.56±0.29a 0.0079±0.004a 表 4 细菌功能表达丰度
Table 4. Significant differences in microbial functions
功能 Function E0 E1 F0 F1 光养 Phototrophy 1.54±0.37c 1.61±0.09b 2.62±0.26a 2.32±0.26a 光合自养 Photoautotrophy 1.47±0.38d 1.61±0.09c 2.60±0.29a 2.26±0.32b 蓝藻 Cyanobacteria 1.23±0.36d 1.55±0.04c 2.56±0.35a 2.26±0.32b 含氧光能自养 Oxygenic photoautotrophy 1.23±0.36d 1.55±0.04c 2.56±0.35a 2.26±0.32b 固氮作用 Nitrogen fixation 3.98±1.90a 1.94±0.20b 0.75±0.31c 0.67±0.36c 硝酸盐呼吸 Nitrate respiration 0.98±0.58a 0.26±0.12c 0.84±0.32b 0.20±0.09c 氮呼吸 Nitrogen respiration 0.98±0.58a 0.26±0.12b 0.84±0.32a 0.20±0.09b 纤维素分解 Cellulolysis 1.04±0.50a 0.50±0.32b 0.16±0.02c 0.15±0.16c 甲基营养 Methylotrophy 0.19±0.01a 0.05±0.08c 0.19±0.02a 0.08±0.05b 甲醇氧化 Methanol oxidation 0.19±0.01a 0.05±0.08c 0.19±0.02a 0.08±0.05b 铁呼吸 Iron respiration 0d 0.02±0.03c 0.14±0.04a 0.07±0.07b 芳香烃碳氢降解 Aromatic hydrocarbon degradation 0c 0.02±0.02b 0c 0.09±0.07a 脂族非甲烷碳氢化合物降解
Aliphatic non methane hydrocarbon degradation0c 0.02±0.02b 0c 0.09±0.07a 碳氢化合物降解 Hydrocarbon degradation 0c 0.02±0.02b 0c 0.09±0.07a -
[1] ZHU J, LI M, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review [J]. The Science of the Total Environment, 2018, 612: 522−537. doi: 10.1016/j.scitotenv.2017.08.095 [2] 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析 [J]. 世界竹藤通讯, 2019, 17(6):45−48.LI Y M, FENG P F. Bamboo resources in China based on the ninth national forest inventory data [J]. World Bamboo and Rattan, 2019, 17(6): 45−48. (in Chinese) [3] 张雨佳, 刘丽, 邹龙海, 等. 毛竹PheFT12a基因过表达对拟南芥开花及芽发育的影响 [J]. 核农学报, 2023, 37(11):2142−2150. doi: 10.11869/j.issn.1000-8551.2023.11.2142ZHANG Y J, LIU L, ZOU L H, et al. Effects of overexpression of the moso bamboo PheFT12a on flowering and bud development of Arabidopsis [J]. Journal of Nuclear Agricultural Sciences, 2023, 37(11): 2142−2150. (in Chinese) doi: 10.11869/j.issn.1000-8551.2023.11.2142 [4] 刘雅娜, 李袁凯, 王金莲, 等. 不同微生物菌剂对马铃薯的促生作用研究 [J]. 干旱区资源与环境, 2023, 37(9):136−143.LIU Y N, LI Y K, WANG J L, et al. Effects of different microbial agents on the growth of potato [J]. Journal of Arid Land Resources and Environment, 2023, 37(9): 136−143. (in Chinese) [5] 徐冰石, 陈伏生, 张林平, 等. 土壤产气肠杆菌的解磷特性及其对毛竹苗的促生作用 [J]. 林业科学研究, 2022, 35(3):38−46.XU B S, CHEN F S, ZHANG L P, et al. Phosphate solubilizing characteristics of Enterobacter aerogenes and its growth-promoting effect on Phyllostachys edulis seedlings [J]. Forest Research, 2022, 35(3): 38−46. (in Chinese) [6] 安福涛, 刘欣宇, 孙富余. 3种芽孢杆菌在番茄生产过程中的应用效果研究 [J]. 山西农业大学学报(自然科学版), 2023, 43(1):82−88.AN F T, LIU X Y, SUN F Y. Study on the effectiveness of three Bacillus strains in tomato production [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2023, 43(1): 82−88. (in Chinese) [7] 蓝江林, 朱育菁, 刘波, 等. 茄子3株内生细菌分别与青枯雷尔氏菌混合培养特性研究 [J]. 福建农业学报, 2012, 27(10):1087−1092. doi: 10.3969/j.issn.1008-0384.2012.10.011LAN J L, ZHU Y J, LIU B, et al. Populations of co-cultivated endophytic bacteria from eggplants and Ralstonia solanacearum [J]. Fujian Journal of Agricultural Sciences, 2012, 27(10): 1087−1092. (in Chinese) doi: 10.3969/j.issn.1008-0384.2012.10.011 [8] CHANDRAKALA C, VOLETI S R, BANDEPPA S, et al. Silicate solubilization and plant growth promoting potential of Rhizobium sp. isolated from rice rhizosphere [J]. Silicon, 2019, 11(6): 2895−2906. doi: 10.1007/s12633-019-0079-2 [9] 武杞蔓, 刘朋宇, 张颖, 等. 微生物菌肥对番茄生长、品质及糖代谢相关酶的影响 [J]. 江苏农业科学, 2022, 50(24):125−130.WU Q M, LIU P Y, ZHANG Y, et al. Influences of microbial agents on tomato growth, quality and enzymes related to sugar metabolism [J]. Jiangsu Agricultural Sciences, 2022, 50(24): 125−130. (in Chinese) [10] 万小琪, 窦维卉, 杨雪, 等. 不同农艺型措施对温室黄瓜连作土壤的改良效果 [J]. 江苏农业科学, 2022, 50(23):228−234.WAN X Q, DOU W H, YANG X, et al. Effects of different agronomic measures on continuous cropping soil improvement of cucumber in greenhouse [J]. Jiangsu Agricultural Sciences, 2022, 50(23): 228−234. (in Chinese) [11] 张建鹏. 化肥减量配施微生物菌肥及土壤调理剂对重茬马铃薯生长发育和土壤质量的影响 [J]. 江苏农业科学, 2023, 51(7):205−212.ZHANG J P. Influences of chemical fertilizer reduction combined with microbial fertilizer and soil conditioner on growth and soil quality of continuous potatoes [J]. Jiangsu Agricultural Sciences, 2023, 51(7): 205−212. (in Chinese) [12] 袁宗胜. 毛竹根区土壤与内生细菌多样性及促生细菌筛选[D]. 福州: 福建农林大学, 2015.YUAN Z S. The Diversity of root zone soil bacteria and endophytic bacteria of moso bamboo and screening of growth-promoting endophytic bacteria[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese) [13] 国家林业局. 中华人民共和国林业行业标准-森林土壤分析方法[S]. 北京: 中国标准出版社, 2000. [14] SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities [J]. Applied and Environmental Microbiology, 2009, 75(23): 7537−7541. doi: 10.1128/AEM.01541-09 [15] 张旋, 杜薇, 徐颖, 等. 包头市半干旱型森林公园土壤细菌多样性与功能 [J]. 生物多样性, 2022, 30(7):193−204. doi: 10.17520/biods.2022245ZHANG X, DU W, XU Y, et al. Soil bacterial diversity and function in semi-arid forest parks in Baotou City [J]. Biodiversity Science, 2022, 30(7): 193−204. (in Chinese) doi: 10.17520/biods.2022245 [16] LOUCA S, PARFREY L W, DOEBELI M. Decoupling function and taxonomy in the global ocean microbiome [J]. Science, 2016, 353(6305): 1272−1277. doi: 10.1126/science.aaf4507 [17] 涂保华, 符菁, 赵远, 等. 基于光合菌剂的复合微生物菌肥对土壤速效养分含量及微生物群落结构多样性的影响 [J]. 西南农业学报, 2019, 32(12):2878−2884.TU B H, FU J, ZHAO Y, et al. Effects of photosynthetic fungicide based compound microbial fertilizer on soil available nutrient content and microbial community structure diversity [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(12): 2878−2884. (in Chinese) [18] 张明, 陈泓志, 李明. 一种复合微生物菌肥对穿心莲生长、品质及土壤性质的影响 [J]. 中国实验方剂学杂志, 2023, 29(4):153−160.ZHANG M, CHEN H Z, LI M. Effect of a compound microbial fertilizer on growth, quality, and soil properties of Andrographis paniculata [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(4): 153−160. (in Chinese) [19] 袁雅文. 有益微生物作用机理及微生物菌肥的应用前景 [J]. 杂交水稻, 2022, 37(4):7−14.YUAN Y W. Action mechanism of beneficial microorganisms and application prospect of microbial fertilizers [J]. Hybrid Rice, 2022, 37(4): 7−14. (in Chinese) [20] 决超. 微生物菌肥与土壤改良基质对连作马铃薯土壤性质及微生物群落的影响 [J]. 江苏农业科学, 2023, 51(1):218−224.JUE C. Effects of microbial fertilizer and soil improvement substrate on soil properties and microbial community of continuous cropping potato [J]. Jiangsu Agricultural Sciences, 2023, 51(1): 218−224. (in Chinese) [21] 高志伟, 刘凡惠, 贾美清, 等. 基于Illumina高通量测序的天津北大港湿地沉积物细菌群落特征和多样性分析 [J]. 天津师范大学学报(自然科学版), 2021, 41(4):45−52.GAO Z W, LIU F H, JIA M Q, et al. Illumina-based high-throughput sequencing analysis of bacterial community structure and diversity in Beidagang wetland sediment, Tianjin [J]. Journal of Tianjin Normal University (Natural Science Edition), 2021, 41(4): 45−52. (in Chinese) [22] PIOUCEAU J, BOIS G, PANFILI F, et al. Effects of high nutrient supply on the growth of seven bamboo species [J]. International Journal of Phytoremediation, 2014, 16(7/8/9/10/11/12): 1042−1057. [23] LUO X Z, KEENAN T F, CHEN J M, et al. Global variation in the fraction of leaf nitrogen allocated to photosynthesis [J]. Nature Communications, 2021, 12(1): 4866. doi: 10.1038/s41467-021-25163-9 [24] 冼康华, 苏江, 付传明, 等. 不同菌肥对华重楼根际土壤微生物多样性及理化性质的影响 [J]. 广西科学, 2021, 28(6):616−625.XIAN K H, SU J, FU C M, et al. Effects of different bacterial fertilizers on microbial diversity, physical and chemical properties of rhizosphere soil of Paris polyphylla var. chinensis [J]. Guangxi Sciences, 2021, 28(6): 616−625. (in Chinese) [25] 胡基华, 李晶, 张淑梅, 等. 解淀粉芽孢杆菌TF28对设施连作黄瓜根际土壤酶活性和微生物的调节 [J]. 江苏农业科学, 2020, 48(7):152−156.HU J H, LI J, ZHANG S M, et al. Regulation of Bacillus amyloliquefaciens TF28 on soil enzyme activities and microorganisms in rhizosphere of cucumber under continuous cropping in greenhouse [J]. Jiangsu Agricultural Sciences, 2020, 48(7): 152−156. (in Chinese) [26] 张昕, 张立钦, 林海萍, 等. 引入黄瓜根围的2株生防菌株的生态效应 [J]. 浙江林学院学报, 2007, 24(6):649−653.ZHANG X, ZHANG L Q, LIN H P, et al. Biocontrol agents introduced into a Cucumis melo rhizosphere [J]. Journal of Zhejiang Forestry College, 2007, 24(6): 649−653. (in Chinese) [27] VAN DEYNZE A, ZAMORA P, DELAUX P M, et al. Nitrogen fixation in a Landrace of maize is supported by a mucilage-associated diazotrophic microbiota [J]. PLoS Biology, 2018, 16(8): e2006352. doi: 10.1371/journal.pbio.2006352 [28] IGIEHON N O, BABALOLA O O. Rhizosphere microbiome modulators: Contributions of nitrogen fixing bacteria towards sustainable agriculture [J]. International Journal of Environmental Research and Public Health, 2018, 15(4): 574. doi: 10.3390/ijerph15040574 [29] SÁNCHEZ-NAVARRO V, ZORNOZA R, FAZ Á, et al. Inoculation with different nitrogen-fixing bacteria and arbuscular mycorrhiza affects grain protein content and nodule bacterial communities of a fava bean crop [J]. Agronomy, 2020, 10(6): 768. doi: 10.3390/agronomy10060768 [30] 刘耀辉, 盛可银, 罗建荣, 等. 溶磷菌混施对土壤微生物群落及毛竹生长的影响 [J]. 江西农业大学学报, 2023, 45(2):298−310.LIU Y H, SHENG K Y, LUO J R, et al. Effects of phosphorus solubilizing bacterial compound suspensions on growth of moso bamboo(Phyllostachys edulis) and soil microbial community structures [J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(2): 298−310. (in Chinese)