Effects of Paclobutrazol and Ethephon on the Differentiation of Flower Buds and Expression of Flowering Genes in Erythrina sykesii
-
摘要:
目的 探讨多效唑(paclobutrazol, PAC)和乙烯利(ethephon, ETH)对西克刺桐(Erythrina sykesii)碳氮代谢、内源激素及成花相关基因表达的影响,为刺桐属植物花期调控提供理论依据。 方法 以8 年生的西克刺桐为材料,在花芽生理分化期进行多效唑(PAC)600 mg·L−1、乙烯利(ETH)50 mg·L−1以及二者共同喷施处理,以清水为对照(CK),每个处理均喷施3次。检测顶芽不同花芽生理分化期的碳氮代谢物质含量、内源激素水平和成花相关基因表达量,并调查统计盛花期西克刺桐花序大小、数量和枝条成花率。 结果 西克刺桐叶面喷施多效唑和乙烯利后,随着花芽生理分化进程推进,顶芽的可溶性糖和全碳含量逐渐上升,而可溶性蛋白和全氮含量逐渐下降,导致碳氮比(C/N)升高;其中,PAC+ETH处理与PAC和ETH处理均存在显著差异,在生理分化末期PAC+ETH处理的C/N比值达到最大值。顶芽的内源激素含量也随着生理分化进程而变化,玉米素核苷(zeatin riboside, ZR)和脱落酸(abscisic acid, ABA)含量逐渐上升,而赤霉素(gibberellic acid, GA3)和吲哚乙酸(indole-3-acetic acid, IAA)含量逐渐下降;引起ABA/IAA、ABA/GA3、ZR/IAA、ZR/GA3比值逐渐升高;PAC+ETH处理的激素比值与PAC和ETH处理间均存在显著差异,在生理分化末期PAC+ETH处理的ABA/IAA、ABA/GA3、ZR/IAA、ZR/GA3比值均达到最大值,分别比对照提高317.49%、185.34%、310.58%、180.62%。成花促进基因FT在生理分化中期开始表达且表达量逐渐上调,SOC1、AP1、SVP和LFY基因在生理分化末期才明显表达;成花抑制基因TFL1在生理分化前期就开始表达且表达量逐渐下调。多效唑和乙烯利处理均能促进西克刺桐花芽分化进程和成花诱导,其中600 mg·L−1 PAC+50 mg·L−1 ETH处理的植株开花期提前12 d,枝条成花率达36.46%,植株总花期达55 d。 结论 西克刺桐花芽生理分化期喷施多效唑和乙烯利有利于提高碳氮代谢物质含量,调节内源激素水平和成花相关基因表达,有效促进西克刺桐花芽分化。 Abstract:Objective To explore the effects of paclobutrazol (PAC) and ethephon (ETH) on carbon and nitrogen metabolism, endogenous hormone levels, and flower-related gene expression in the flowering plant of Erythrina sykesii, and provide theoretical basis for regulating the flowering period of E. sykesii. Methods Eight-year-old E. sykesii. were treated with three sprays of PAC (600 mg·L−1) and ETH (50 mg·L−1) during the bud physiological differentiation stage, with distilled water as the control (CK). The contents of carbon and nitrogen metabolites, endogenous hormone levels, and flower-related gene expression in the top buds were detected during different bud physiological differentiation periods, and the inflorescence size and number, and branch flowering rate were investigated and statistically analyzed during the peak flowering period. Results After spraying PAC and ETH on the leaves of E. sykesii., the soluble sugar and total carbon (C) content in the top buds gradually increased with the progress of physiological differentiation, while the soluble protein and total nitrogen (N) content gradually decreased, resulting in an increase in the C/N ratio. Among them, there were significant differences between the PAC+ETH treatment and the PAC and ETH treatments, with the PAC+ETH treatment reaching the maximum C/N ratio at the end of physiological differentiation. The endogenous hormone content in the top buds also changed with the physiological differentiation process, with zeatin riboside (ZR) and abscisic acid (ABA) content gradually increasing, while gibberellic acid (GA3) and indole-3-acetic acid (IAA) content gradually decreasing; resulting in a gradual increase in the ratios of ABA/IAA, ABA/GA3, ZR/IAA, and ZR/GA3. There were significant differences between the PAC+ETH treatment and the PAC and ETH treatments, with the PAC+ETH treatment reaching the maximum ABA/IAA, ABA/GA3, ZR/IAA, and ZR/GA3 ratios at the end of physiological differentiation, which were 317.49%, 185.34%, 310.58%, and 180.62% higher than the control, respectively. The flowering-promoting gene Flowering Locus T (FT) began to express and the gene amount gradually increased during the middle stage of physiological differentiation, while SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), APETALA 1 (AP1), SHORT VEGETATIVE PHASE (SVP), and LEAFY (LFY) genes were significantly expressed at the end of physiological differentiation. The flowering-inhibiting gene TERMINAL FLOWER 1 (TFL1) began to express and the gene amount gradually decreased during the early stage of physiological differentiation. Both paclobutrazol and ethephon treatments promoted the flowering bud differentiation process and flowering induction of E. sykesii. The plant treated with PAC+ETH had an advanced flowering period of 12 days, a flowering rate of 36.46%, and a total flowering period of 55 days. Conclusion During the physiological differentiation stage of the flower buds of E. sykesii., spraying paclobutrazol and ethenol is conducive to enhancing the content of carbon and nitrogen metabolites, modulating endogenous hormone levels, stimulating the expression of flowering-related genes, and effectively facilitating floral bud differentiation in E. sykesii. -
Key words:
- Erythrina sykesii /
- Flower bud induction /
- Plant growth regulator /
- Floral genes /
- Endogenous hormones
-
表 1 表1 西克刺桐成花相关基因定量PCR引物序列
Table 1. Primers designed for flower related genes in E. sykesii
基因
Gene前引物/后引物
Forward/
Reverse primers序列(5'-3')
Sequence(5'-3')TIP41 TIP41-F GGGTTGGATGGAAGAAGAAGCAC TIP41-R CACTTGCTGTGACGGTTTACTTC TFL1 TFL1-F GGCAGAGGAGAGGACAGGTA TFL1-R AAGAGAGTGTCAGTCAGCGG LFY LFY-F AGAGGGAGCATCCGTTTATCGT LFY-R CGTACCTGAATACTTGGTTCGTCAC AP1 AP1-F TGAACATGGGTGGCAATTAC AP1-R TGTCAAATGCCATACCAAAG SVP SVP-F GATTGAGCAAGGAAGTTGCC SVP-R TCTTCTCTCCCTTCTTTTCTATTAT FT FT-F AGTCCTAGCAACCCTCACCTCC FT-R GTCTTCTTCCTCCGCAGCCACT SOC1 SOC1-F TTGTGATGCTGAAGTTGCTCTCAT SOC1-R ACTCCTGTTATGCCTGCGGTAG 表 2 多效唑和乙烯对西克刺桐成花的影响
Table 2. Effects of paclobutrazol on the flowering of E. sykesii
处理
Treatment花序长
Inflorescence
length/cm花序宽
Inflorescence
width/cm花序小花数
Small flowers
number枝条成花率
Flower formation
rate/%始花日期
Early flowering
date较对照提前天数
Earlier than
the control/d总花期
Total
flowering time/dCK 18.3±1.6 a 12.4±1.2 a 66.7±3.9 a 13.02±1.31 c 2023-02-06 0 46 PAC 15.1±4.5 b 12.5±2.4 a 65.1±5.2 a 21.82±1.74 b 2023-02-01 5 54 ETH 18.6±1.4 a 12.7±1.6 a 68.8±6.1 a 26.75±2.91 b 2023-01-30 7 52 PAC+ETH 16.2±0.8 b 12.9±5.8 a 67.3±4.1 a 36.46±4.85 a 2023-01-25 12 55 同列数据后不同小写字母表示不同处理间差异达到显著水平(P<0.05)。
Different lowercase letters in the same column indicate significant differences among different treatments at 0.05 level. -
[1] ESLER A, EDGAR E. Erythrina x sykesii [J]. Auckland Botanical Society Journal. 1997, 52: 39-42. [2] SI Y, WEN Y, YE H, et al. The sink-source relationship regulated Camellia oleifera flower bud differentiation by influencing endogenous hormones and photosynthetic characteristics [J]. Forests, 2023, 14(10): 1−13 [3] KOUR R, SINGH A, SINGH P, et al. Effect of foliar spraying with the growth inhibitor paclobutrazol on the quality of chandler strawberry (Fragaria ananassa) under punjab subtropics [J]. Journal of Advances in Biology Biotechnology, 2024, 27(2): 179−185. doi: 10.9734/jabb/2024/v27i2709 [4] ZHANG Y Y, HE Z Z, XING P P, et al. Effects of paclobutrazol seed priming on seedling quality, photosynthesis, and physiological characteristics of fragrant rice [J]. BMC Plant Biology, 2024, 24(1): 53. doi: 10.1186/s12870-023-04683-0 [5] 董志君, 张建军, 范永明, 等. 3种植物生长延缓剂对盆栽芍药的矮化效应 [J]. 东北林业大学学报, 2020, 48(9):62−66. doi: 10.3969/j.issn.1000-5382.2020.09.012DONG Z J, ZHANG J J, FAN Y M, et al. Dwarfing effects of paclobutrazol, unicnazleand chlormequat on potted Paeonia lactiflora [J]. Journal of Northeast Forestry University, 2020, 48(9): 62−66. (in Chinese) doi: 10.3969/j.issn.1000-5382.2020.09.012 [6] 赵明, 何海旺, 武鹏, 等. 外源多效唑(PP333)调控成花生理促进粉蕉早抽蕾 [J]. 分子植物育种, 2021, 19(15):5113−5119.ZHAO M, HE H W, WU P, et al. Exogenous polyazole(PP333) regulated flower physiology to promote early bud extraction of pisang awak(ABB) [J]. Molecular Plant Breeding, 2021, 19(15): 5113−5119. (in Chinese) [7] 刘伦, 王超, 姚改芳, 等. 外源生长调节剂处理对‘满天红’ב砀山酥梨’后代成花的影响 [J]. 南京农业大学学报, 2015, 38(3):381−388.LIU L, WANG C, YAO G F, et al. Effects of exogenous growth regulator treatment on floral initiation of pear progenies from hybrids‘Mantianhong' × ‘Dangshansuli' [J]. Journal of Nanjing Agricultural University, 2015, 38(3): 381−388. (in Chinese) [8] LI Q F, GUO W L, CHEN B H, et al. Transcriptional and hormonal responses in ethephon-induced promotion of femaleness in pumpkin [J]. Frontiers in Plant Science, 2021, 12: 715487. doi: 10.3389/fpls.2021.715487 [9] 陈华蕊, 陈业渊, 何书强, 等. 乙烯利诱导杧果花芽分化与内源激素含量的关系 [J]. 中国南方果树, 2016, 45(5):55−58.CHEN H R, CHEN Y Y, HE S Q, et al. Relationship between flower bud differentiation of mango induced by ethephon and endogenous hormone content [J]. South China Fruits, 2016, 45(5): 55−58. (in Chinese) [10] 陈炫, 陶忠良, 吴志祥, 等. 多效唑+乙烯利对妃子笑荔枝内源激素及碳氮营养的影响 [J]. 江西农业大学学报, 2012, 34(1):27−33. doi: 10.3969/j.issn.1000-2286.2012.01.006CHEN X, TAO Z L, WU Z X, et al. Effect of PP333 and ethrel treatment on endogenous hormones and carbon and nitrogen nutrients in feizixiao Litchi [J]. Acta Agriculturae Universitatis Jiangxiensis, 2012, 34(1): 27−33. (in Chinese) doi: 10.3969/j.issn.1000-2286.2012.01.006 [11] MELLO L M D, LEMOS R, MARQUES A, et al. Ancient and current distributions of Erythrina crista-galli L. (Fabaceae) in South America [J]. Floresta e Ambiente, 2019, 26(2): e11442017. [12] 陈清海. 基质、插穗与生根剂对刺桐属植物扦插成活率的影响 [J]. 东南园艺, 2023, 11(3):201−204.CHEN Q H. Effects of substrates, cutting types, and rooting agents on survival rate of cutting of Erythrina plants [J]. Southeast Horticulture, 2023, 11(3): 201−204. (in Chinese) [13] FAHMY N M, AL‐SAYED E, EL‐SHAZLY M, et al. Comprehensive review on flavonoids biological activities of Erythrina plant species [J]. Industrial Crops & Products, 2018, 123: 500−538 [14] AZMI A S, MEDIANI A, WAN ABDUL MUIZ WAN ZAINAL ABIDIN, et al. Phytochemical variation between hydrochloric and tartaric acid-derived alkaloidal extracts of Erythrina fusca Lour. leaves: A proton NMR-based approach [J]. South African Journal of Botany, 2024, 168: 430−451. doi: 10.1016/j.sajb.2024.03.040 [15] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. [16] 杨伊玲, 刘根红, 薛垠鑫, 等. 不同施氮量对麦后复种蔬菜生长及碳氮比的影响 [J]. 甘肃农业大学学报, 2023, 58(6):56−65.YANG Y L, LIU G H, XUE Y X, et al. Effects of different nitrogen dosage on the growth and carbon-nitrogen ratio of the wheat compound vegetables [J]. Journal of Gansu Agricultural University, 2023, 58(6): 56−65. (in Chinese) [17] 金洲, 卢山, 江俊浩, 等. 园艺植物花芽分化影响因素及机理研究进展 [J]. 园艺学报, 2023, 50(5):1151−1164.JIN Z, LU S, JIANG J H, et al. Research progress on influencing factors and mechanisms of flower bud differentiation in horticultural plants [J]. Acta Horticulturae Sinica, 2023, 50(5): 1151−1164. (in Chinese) [18] 易仁知, 秦俊, 黄清俊. 穗花牡荆花芽分化过程中形态和生理指标变化 [J]. 西北植物学报, 2023, 43(10):1760−1769.YI R Z, QIN J, HUANG Q J. Study on the changes of morphological and physiological indexes during flower bud differentiation of Vitex agnus-castus [J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(10): 1760−1769. (in Chinese) [19] 温玥, 郝志超, 孙天雨, 等. 油茶花芽分化过程中营养物质和内源激素的变化规律 [J]. 经济林研究, 2023, 41(4):31−39.WEN Y, HAO Z C, SUN T Y, et al. Changes of nutrients and endogenous hormones during the flower bud differentiation of Camellia oleifera [J]. Non-wood Forest Research, 2023, 41(4): 31−39. (in Chinese) [20] 林榕燕, 陈艺荃, 林兵, 等. 杂交兰‘黄金小神童’花芽分化过程形态与生理变化 [J]. 福建农业学报, 2019, 34(2):170−175.LIN R Y, CHEN Y Q, LIN B, et al. Morphological and physiological changes during flower bud differentiation of Cymbidium gold elf ‘Sun-dust’ [J]. Fujian Journal of Agricultural Sciences, 2019, 34(2): 170−175. (in Chinese) [21] ZHANG W E, LI J J, ZHANG W L, et al. The changes in C/N, carbohydrate, and amino acid content in leaves during female flower bud differentiation of Juglans sigillata [J]. Acta Physiologiae Plantarum, 2022, 44(2): 19. doi: 10.1007/s11738-021-03328-9 [22] 张华, 聂艳, 王定跃, 等. 乙烯利和多效唑对簕杜鹃生长开花及生理特性的影响 [J]. 林业科学, 2018, 54(10):46−55.ZHANG H, NIE Y, WANG D Y, et al. Effects of ETH and PP333 on the growth, florescence and physiological properties of Bougainvillea spectabilis [J]. Scientia Silvae Sinicae, 2018, 54(10): 46−55. (in Chinese) [23] 刘柯宁, 张力允, 刘博文, 等. 多效唑对高羊茅弱光下生长及其碳氮代谢的调控作用 [J]. 草地学报, 2023, 31(1):105−111.LIU K N, ZHANG L Y, LIU B W, et al. Regulatory effect of paclobutrazol on growth and carbon/nitrogen metabolism of tall fescue under low light [J]. Acta Agrestia Sinica, 2023, 31(1): 105−111. (in Chinese) [24] YANG Y, CHEN Z, ZOU R, et al. Comparative study of endogenous hormone dynamics during the first and second growth cycles in Sophora japonica cv. jinhuai harvested twice a year [J]. Journal of Biotech Research, 2023, 14: 59−66. [25] 江海都, 孙菲菲, 秦惠珍, 等. 四季花金花茶花芽分化进程及叶片内源激素变化 [J]. 广西植物, 2024, 44(1):56−67.JIANG H D, SUN F F, QIN H Z, et al. Flower bud differentiation and leaf endogenous hormone changes of Camellia perpetua [J]. Guihaia, 2024, 44(1): 56−67. (in Chinese) [26] 许昕, 刘佳奇, 王宇含, 等. 小叶丁香花芽分化进程及内源激素的变化 [J]. 生态学杂志, 2024, 43(1):146−152.XU X, LIU J Q, WANG Y H, et al. The differentiation process of flower bud and the changes of endogenous hormones in Syringa microphylla [J]. Chinese Journal of Ecology, 2024, 43(1): 146−152. (in Chinese) [27] 张瑞, 唐红, 何丽霞. 同株紫斑牡丹中单瓣与重瓣花芽分化及内源激素含量比较 [J]. 西北植物学报, 2022, 42(7):1152−1160.ZHANG R, TANG H, HE L X. Comparison of flower bud differentiation and endogenous hormone contents between single and double petals of Paeonia rockii from same plant [J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(7): 1152−1160. (in Chinese) [28] 刘智媛, 曾丽, 杜习武, 等. 藤本月季“安吉拉” 花芽分化形态结构及内源激素变化研究 [J]. 植物研究, 2021, 41(1):37−43.LIU Z Y, ZENG L, DU X W, et al. Flower bud differentiation and endogenous hormone changes of Rosa ‘Angela’ [J]. Bulletin of Botanical Research, 2021, 41(1): 37−43. (in Chinese) [29] ZHANG Y J, SUN J X, PAN X J, et al. The effect of low temperature on growth and development of Phalaenopsis [J]. Pakistan Journal of Botany, 2020, 52(4): 1197−1203. [30] 宋耀峰, 张林森, 赵紫嫣, 等. 复硝酚钾和亚磷酸钾对‘富士’苹果激素含量及相关成花基因表达的影响 [J]. 西北农业学报, 2023, 32(7):1041−1049.SONG Y F, ZHANG L S, ZHAO Z Y, et al. Effects of compound potassium nitrophenolate and potassium phosphite on hormone content and expression of related flowering genes in ‘fuji’ apple (Malus domestica Borkh) [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(7): 1041−1049. (in Chinese) [31] 林瑞君, 罗炘武, 谢锐星, 等. 控水方式对2种簕杜鹃开花及生理特征的影响 [J]. 中南民族大学学报(自然科学版), 2024, 43(2):181−188.LIN R J, LUO X W, XIE R X, et al. Effects of water control methods on the florescence and physiological properties of two Bougainvillea glabra [J]. Journal of South-Central Minzu University (Natural Science Edition), 2024, 43(2): 181−188. (in Chinese) [32] 杜立言, 俞洁蕾, 周春玲. 内源激素对木本植物花芽分化影响研究进展 [J]. 青岛农业大学学报(自然科学版), 2021, 38(2):79−84.DU L Y, YU J L, ZHOU C L. Research progress in the effect of endogenous hormones on flower bud differentiation of woody plants [J]. Journal of Qingdao Agricultural University (Natural Science), 2021, 38(2): 79−84. (in Chinese) [33] 张衡锋, 韦庆翠, 汤庚国. 番红花花芽分化过程中内源激素和糖含量的变化 [J]. 云南农业大学学报(自然科学), 2018, 33(4):684−689.ZHANG H F, WEI Q C, TANG G G. Changes in the endogenous hormones and carbohydrate contents in Crocus sativus L. during floral bud differentiation [J]. Journal of Yunnan Agricultural University (Natural Science), 2018, 33(4): 684−689. (in Chinese) [34] GUO Y Y, AN L Z, YU H Y, et al. Endogenous hormones and biochemical changes during flower development and florescence in the buds and leaves of Lycium ruthenicum Murr [J]. Forests, 2022, 13(5): 763. doi: 10.3390/f13050763 [35] 王明月, 曹受金, 彭继庆. 赤霉素、水杨酸和乙烯利对圆锥绣球开花及生理特性的影响 [J]. 江西农业大学学报, 2023, 45(3):605−618.WANG M Y, CAO S J, PENG J Q. Effects of gibberellin, salicylic acid, ethephon on flowering and physiological characteristics of Hydrangea paniculata [J]. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(3): 605−618. (in Chinese) [36] TURCK F, FORNARA F, COUPLAND G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage [J]. Annual Review of Plant Biology, 2008, 59: 573−594. doi: 10.1146/annurev.arplant.59.032607.092755 [37] 杨天一, 马利萍, 李凯, 等. 外源24-表油菜素内酯对花后苹果短枝叶片糖代谢和成花基因表达的影响 [J]. 西北农业学报, 2023, 32(4):577−584.YANG T Y, MA L P, LI K, et al. Effect of exogenous 24- epicastasterone on glucose metabolism and floral gene expression in apple spur leaves after flowering [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(4): 577−584. (in Chinese) [38] 刘朝斌, 李荣, 陈诗婷, 等. 核桃开花相关基因JrSOC1的筛选及其在开花中的作用分析 [J]. 西北林学院学报, 2023, 38(4):97−103.LIU C B, LI R, CHEN S T, et al. Identification of Flowering Related JrSOC1 gene in Walnut and Its Role in Flowering [J]. Journal of Northwest Forestry University, 2023, 38(4): 97−103. (in Chinese) [39] 张丽之, 张昕, 左希亚, 等. 外源葡萄糖对‘长富2号’苹果花芽生理分化期可溶性糖和相关基因表达的影响 [J]. 园艺学报, 2019, 46(1):11−24.ZHANG L Z, ZHANG X, ZUO X Y, et al. Effects of exogenous glucose treatment on soluble sugar and expression of related genes during floral bud differentiation stage in terminal SpurBuds of ‘nagafu 2’ apple [J]. Acta Horticulturae Sinica, 2019, 46(1): 11−24. (in Chinese) [40] FRAGOSO-JIMENEZ J C, NAVARRO-LOPEZ D E, BARBA-GONZALEZ R, et al. The orthologous Flowering Locus T (FT) and LEAFY (LFY) genes in the floral transition of Polianthes tuberose [J]. Acta Horticulturae, 2020, 1288: 225−229. [41] 杜利莎, 齐思言, 马娟娟, 等. ‘长富2号’苹果短枝幼果摘除对芽叶可溶性糖积累和成花相关基因表达的影响 [J]. 园艺学报, 2017, 44(4):622−632.DU L S, QI S Y, MA J J, et al. Effects of de-fruit treatment on soluble sugar accumulation and expression of flowering-related genes in terminal spur buds and leaves of ‘fuji’ apple [J]. Acta Horticulturae Sinica, 2017, 44(4): 622−632. (in Chinese) [42] BENLLOCH R, KIM M C, SAYOU C, et al. Integrating long-day flowering signals: A LEAFY binding site is essential for proper photoperiodic activation of APETALA1 [J]. The Plant Journal: for Cell and Molecular Biology, 2011, 67(6): 1094−1102. doi: 10.1111/j.1365-313X.2011.04660.x [43] SAMARTH, LEE R, KELLY D, et al. A novel TFL1 gene induces flowering in the mast seeding alpine snow tussock, Chionochloa pallens (Poaceae) [J]. Molecular Ecology, 2022, 31(3): 822−838. doi: 10.1111/mec.16273 [44] DRABEŠOVÁ J, ČERNÁ L, MAŠTEROVÁ H, et al. The evolution of the FT/TFL1 genes in Amaranthaceae and their expression patterns in the course of vegetative growth and flowering in Chenopodium rubrum [J]. G3 Genes| Genomes| Genetics, 2016, 6(10): 3065−3076. [45] 王云梦, 宋贺云, 刘娟, 等. FT和TFL1基因调控植物开花的分子机理 [J]. 植物生理学报, 2022, 58(1):77−90.WANG Y M, SONG H Y, LIU J, et al. Molecular mechanism of FT and TFL1 genes on regulation of plant flowering [J]. Plant Physiology Journal, 2022, 58(1): 77−90. (in Chinese)