Functional Evaluation of Enzymatic Hydrolyzed Peptides from Hongqu Glutinous Rice Wine Grains Protein
-
摘要:
目的 研究不同蛋白酶对红曲糟酶解的效果,并对其酶解液进行功能性评价,为红曲糟源蛋白肽的研发制备提供理论支持。 方法 以提高蛋白含量后的红曲糟为原料,利用碱性蛋白酶、胰蛋白酶、动物蛋白酶、木瓜蛋白酶、菠萝蛋白酶、胃蛋白酶、复配酶制剂F106、酵母抽提酶等不同蛋白酶进行酶解,考察其酶解率、1,1-二苯基-2-三硝基苯肼(DPPH)和2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)自由基清除抗氧化能力、黄嘌呤氧化酶(Xanthine oxidase, XOD)和血管紧张素转化酶(Angiotensin converting enzyme, ACE)抑制活性等生物活性功能。 结果 蛋白酶解率最高的为动物蛋白酶和胰蛋白酶酶解处理,分别为(71.43±1.03)%和(70.20±0.32)%。DPPH自由基清除抗氧化能力最优的是胃蛋白酶、碱性蛋白酶和酵母抽提酶酶解处理,蛋白肽的半数效应浓度(Median effective concentration, EC50)分别为(2.78±0.34)mg·mL−1、(3.02±0.03)mg·mL−1、(3.24±0.65)mg·mL−1;ABTS自由基清除抗氧化能力、XOD抑制活性能力最优的均为胃蛋白酶和碱性蛋白酶酶解液,其蛋白肽的EC50值分别为(1.54±0.07)mg·mL−1、(6.45±0.27)mg·mL−1和(10.71±0.06)mg·mL−1、(17.68±0.04)mg·mL−1,二者的XOD半数抑制指数分别为(1.28±0.01)、(1.78±0.03);ACE抑制活性最优的为碱性蛋白酶酶解液和木瓜蛋白酶酶解液,蛋白肽的EC50值均为(0.27±0.01)mg·mL−1,半数抑制指数分别为(118.40±3.53)、(98.35±1.95)。 结论 红曲糟源蛋白经不同蛋白酶酶解后的肽段具有不同的生物活性,其中以胃蛋白酶酶解的XOD抑制活性能力较强,碱性蛋白酶和木瓜蛋白酶酶解的ACE抑制活性较优。 -
关键词:
- 红曲酒糟 /
- 酶解蛋白肽 /
- 酶解率 /
- DPPH自由基清除抗氧化能力 /
- ABTS自由基清除抗氧化能力 /
- XOD抑制活性 /
- ACE抑制活性
Abstract:Objective The study investigated the effects of various proteases on the enzymatic hydrolysis of protein from Hongqu glutinous rice wine grains, followed by a functional evaluation of the resulting enzymatic hydrolysate. The purpose was to provide theoretical support for the development and preparation of protein peptides derived from Hongqu glutinous rice wine grains protein. Method Purified Hongqu glutinous rice wine grains were utilized as the raw material, employing various proteases, including alcalase, trypsin, animal protease, papain, bromelain, pepsin, compound enzyme preparation F106, and yeast extract enzyme, for enzymatic hydrolysis. The enzymatic hydrolysis rate, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) free radical scavenging antioxidant ability, xanthine oxidase (XOD), and angiotensin-converting enzyme (ACE) inhibitory activity, along with other biological activity functions, were described. Results The peak proteolytic rates for animal protease and trypsin were (71.43±1.03)% and (70.20±0.32)%, respectively. Among the hydrolysates, those derived from pepsin, alcalase and yeast extract enzyme exhibited the best DPPH free radical scavenging antioxidant capacity. The median effective concentration(EC50) of peptides were (2.78±0.34) mg·mL−1, (3.02±0.03) mg·mL−1 and (3.24±0.65) mg·mL−1, respectively. The hydrolysates of pepsin and alcalase exhibited superior ABTS scavenging and XOD inhibition capabilities. The protein of peptides EC50 values were (1.54±0.07) mg·mL−1, (6.45±0.27) mg·mL−1, (10.71±0.06) mg·mL−1, and (17.68±0.04) mg·mL−1, respectively, while their half inhibitory indices of XOD were (1.28±0.01) and (1.78±0.03), respectively. Alcalase and papain hydrolysate showed themostoptimal ACE inhibitory activity. The EC50 of the peptides were (0.27±0.01) mg·mL−1 and their half inhibition indices were (118.40±2.53) and (98.35±1.95), respectively. Conclusion The peptides derived from the protein of Hongqu glutinous rice wine grains exhibit different biological activities after enzymatic hydrolysis by various proteases. Among them, the XOD inhibitory activity of pepsin enzymatic hydrolysis is stronger, and the ACE inhibitory activity of alcalase and papain enzymatic hydrolysis is better. -
表 1 蛋白酶酶解条件
Table 1. Enzymatic hydrolysis conditions of protease
蛋白酶
Proteinase酶活测定
Enzyme activity test/( U·g−1)pH 温度
Temperature/℃时间
Time/h动物蛋白酶 60823±133 7 55 4 复配酶制剂F106 24963±188 7 50 4 菠萝蛋白酶 37956±225 6.5 45 4 木瓜蛋白酶 31022±258 7 50 4 碱性蛋白酶 75999±293 9.5 50 4 胰蛋白酶 62866±165 8 50 4 酵母抽提酶 79572±122 6.5 55 4 胃蛋白酶 3759±64 2.5 37 4 酶活参照行业标准SB/T 10317-1999蛋白酶活力测定[12]。
Enzyme activity reference industry standard SB/T 10317-1999 protease activity determination.表 2 不同蛋白酶的红曲糟蛋白肽酶解率
Table 2. Proteolysis rate of Hongqu glutinous rice wine grains protein with different proteases
酶解液
Enzymolysis liquid酶解蛋白肽粗蛋白含量
Crude protein content of enzymatic
hydrolysis protein peptide/(g·hg−1)酶解蛋白肽酸溶性蛋白含量
Content of acid-soluble protein in enzymatic
hydrolysis protein peptide/(g·hg−1)酶解率
Enzymolysis rate/%动物蛋白酶 4.12±0.02 Aa 4.11±0.05 Aa 71.43±1.03 Aa 复配酶制剂F106 3.19±0.09 BCbc 3.15±0.15 Bc 50.17±1.87 Cc 菠萝蛋白酶 1.94±0.02 Ed 1.94±0.05 De 30.42±1.03 Ee 木瓜蛋白酶 2.66±0.03 CDc 2.64±0.07 Cd 42.94±1.09 Dd 碱性蛋白酶 3.17±0.02 BCb 3.15±0.05 Bc 56.64±0.64 Bb 胰蛋白酶 4.14±0.01 Aa 3.94±0.04 Aa 70.20±0.32 Aa 酵母抽提酶 3.65±0.07 ABb 3.56±0.08 Bb 57.94±1.52 Bb 胃蛋白酶 2.40±0.01 DEd 1.37±0.01 Df 21.93±0.01 Ff 1)原料上清液蛋白含量为(0.45±0.01)g·hg−1,酸溶性蛋白含量为(0.43±0.01)g·hg−1。2)不同样品数据间差异达显著水平和极显著水平分别采用小写字母(P<0.05)与大写字母(P<0.01)表示,下同。
1)The protein content of the supernatant was (0.45±0.01) g·hg−1, and the acid-soluble protein content was (0.43±0.01) g·hg−1. 2)The significance between different sample data was expressed in lowercase letters (P<0.05 ) and uppercase letters (P< 0.01 ). Same for below.表 3 不同蛋白酶处理红曲糟酶解蛋白肽的DPPH自由基清除抗氧化能力
Table 3. DPPH radical scavenging antioxidant ability of enzymatic peptides from Hongqu glutinous rice wine grains protein treated with different proteases
酶解蛋白肽
Protein hydrolysated peptideEC50/
(mg·mL−1)AO值
AO value动物蛋白酶 4.62±0.54 Bb 13.67±1.59 Bb 复配酶制剂F106 4.53±0.49 BCb 13.40±1.44 Bb 菠萝蛋白酶 6.17±0.43 Aa 18.25±1.27 Aa 木瓜蛋白酶 3.81±0.25 BCDb 11.27±0.37 BCDcd 碱性蛋白酶 3.02±0.03 CDc 8.92±0.15 Dde 胰蛋白酶 4.40±0.11 BCb 13.01±0.32 BCbc 酵母抽提酶 3.24±0.65 CDc 9.59±1.91 CDde 胃蛋白酶 2.78±0.34 Dc 8.23±0.50 De 1)EC50以酸溶性蛋白计。下同。2)本次试验以(1.00±0.00)mg·mL−1谷胱甘肽为阳性对照,EC50为(0.338±0.00)mg·mL−1,AO值为(1.00±0.00)。3)AO值代表各处理组与(1.00±0.00)mg·mL−1谷胱甘肽EC50的比值,比值越小,清除能力越强。下同。
1)EC50 was calculated as acid-soluble protein. Same for below.2)In this experiment, (1.00±0.00) mg·mL−1 glutathione was used as the positive control, the EC50 was (0.338±0.00) mg·mL−1, and the AO value was (1.00±0.00).3)AO value represents the ratio of each treatment group to (1.00±0.00) mg·mL−1 glutathione EC50. The smaller the ratio, the stronger the scavenging ability. Same for below.表 4 不同蛋白酶处理红曲糟酶解蛋白肽的ABTS自由基清除抗氧化能力
Table 4. ABTS radical scavenging antioxidant ability of enzymatic peptides from Hongqu glutinous rice wine grains protein-treated with different proteases
酶解蛋白肽
Protein hydrolysated peptideEC50/
(mg·mL−1)AO值
AO value动物蛋白酶 3.65±0.30 Cc 114.89±9.65 Cc 复配酶制剂F106 1.82±0.12 Ee 57.58±3.86 Ee 菠萝蛋白酶 1.91±0.12 Ee 60.65±3.89 Ee 木瓜蛋白酶 1.84±0.06 Ee 58.24±1.78 Ee 碱性蛋白酶 6.45±0.27 Aa 204.30±8.65 Aa 胰蛋白酶 3.67±0.36 Bb 118.50±6.97 Bb 酵母蛋白酶 2.25±0.28 Dd 71.24±5.79 Dd 胃蛋白酶 1.54±0.07 Ff 48.73±2.27 Ff 本次试验以(1.00±0.00)mg·mL−1的谷胱甘肽为阳性对照,EC50为(0.032±0.00)mg·mL−1,AO值为(1.00±0.00)。
In this experiment, (1.00±0.00) mg·mL−1 glutathione was used as a positive control, the EC50 was (0.032±0.00) mg·mL−1, and the AO value was (1.00±0.00).表 5 不同蛋白酶处理对红曲酒糟酶解蛋白肽的XOD抑制活性的影响
Table 5. Effects of different protease treatments on XOD inhibitory activity of enzymatic peptides from Hongqu glutinous rice wine grains protein
酶解蛋白肽
Protein hydrolysated peptideEC50/
(mg·mL−1)半数抑制指数
Half inhibition index动物蛋白酶 24.11±0.00 Aa 1.71±0.02 Ab 复配酶制剂F106 20.93±0.03 Cc 1.50±0.02 Bc 木瓜蛋白酶 22.15±0.12 BCb 1.19±0.03 Ce 碱性蛋白酶 17.68±0.04 Dd 1.78±0.03 Aa 胰蛋白酶 22.79±0.04 ABb 1.73±0.02 Aab 酵母抽提酶 23.97±0.14 Aa 1.48±0.04 Bc 胃蛋白酶 10.71±0.06 Ee 1.28±0.01 Cd 菠萝蛋白酶 — — 表中“—”表示未检出。
“—” in the table indicates that it is not detected.表 6 不同蛋白酶处理对红曲酒糟酶解蛋白肽的ACE抑制活性的影响
Table 6. Effects of different protease treatments on ACE inhibitory activity of enzymatic peptides from Hongqu glutinous rice wine grains protein
酶解蛋白肽
Protein hydrolysated peptideEC50/
(mg·mL−1)半数抑制指数
Half inhibition index动物蛋白酶 0.49±0.01 Cc 83.37±1.50 Cc 复配F106 1.66±0.19 Aa 19.19±0.83 Hh 菠萝蛋白酶 0.42±0.06 CDc 46.93±0.66 Ee 木瓜蛋白酶 0.27±0.01 Dd 98.35±1.95 Bb 碱性蛋白酶 0.27±0.01 Dd 118.40±3.35 Aa 胰蛋白酶 0.95±0.09 Bb 41.20±1.35 Ff 酵母抽提酶 0.53±0.03 Cc 68.63±1.64 Dd 胃蛋白酶 0.51±0.02 Cc 26.88±1.05 Gg -
[1] 楼芳菲, 姜健美, 傅明亮, 等. 黄酒糟蛋白的酶法提取工艺研究 [J]. 中国食品学报, 2009, 9(1):112−117.LOU F F, JIANG J M, FU M L, et al. A study on the enzymic extraction technology of the rice wine grains protein [J]. Journal of Chinese Institute of Food Science and Technology, 2009, 9(1): 112−117. (in Chinese) [2] 左楠楠, 王晓伟, 金海如. 酶法提取黄酒糟蛋白工艺研究 [J]. 山西农业科学, 2012, 40(12):1305−1307,1318. doi: 10.3969/j.issn.1002-2481.2012.12.21ZUO N N, WANG X W, JIN H R. Study on enzymic extraction technology of the rice wine grains stillage protein [J]. Journal of Shanxi Agricultural Sciences, 2012, 40(12): 1305−1307,1318. (in Chinese) doi: 10.3969/j.issn.1002-2481.2012.12.21 [3] 林晓婕, 何志刚, 梁璋成, 等. 红曲黄酒糟蛋白酶解物制备工艺优化及营养评价 [J]. 中国粮油学报, 2019, 34(1):43−49.LIN X J, HE Z G, LIANG Z C, et al. Optimization of preparation technology of Hongqu glutinous rice wine grains protein hydrolysate and nutrition value [J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(1): 43−49. (in Chinese) [4] 林晓婕, 梁璋成, 苏昊, 等. 一种红曲糟抗热肽剂及其制备方法与应用: CN112626157B[P]. 2022-12-06. [5] 赵燚涛, 梁璋成, 任香芸, 等. 红曲糟固态制曲对米曲霉3.042产孢子及产酶特性影响 [J]. 福建农业学报, 2023, 38(2):238−244.ZHAO Y T, LIANG Z C, REN X Y, et al. Effects of solid-state fermentation of Hongqu rice wine grains on spore production and enzyme-production characteristics of Aspergillus oryzae 3.042 [J]. Fujian Journal of Agricultural Sciences, 2023, 38(2): 238−244. (in Chinese) [6] YAO K Y, WEI Z H, XIE Y Y, et al. Lactation performance and nitrogen utilization of dairy cows on diets including unfermented or fermented yellow wine lees mix [J]. Livestock Science, 2020, 236: 104025. doi: 10.1016/j.livsci.2020.104025 [7] 李华, 施佳慧. 黄酒糟的氨基酸组成及脂类成分分析 [J]. 安徽农业科学, 2009, 37(34):17142−17143.LI H, SHI J H. Analysis on amino acid composition and lipid of yellow wine lees [J]. Journal of Anhui Agricultural Sciences, 2009, 37(34): 17142−17143. (in Chinese) [8] 万吉志, 冷云伟, 吴根江, 等. 综合利用黄酒糟生产食醋的研究 [J]. 中国酿造, 2016, 35(1):170−173.WAN J Z, LENG Y W, WU G J, et al. Comprehensive utilization of Chinese rice wine vinasse for vinegar production [J]. China Brewing, 2016, 35(1): 170−173. (in Chinese) [9] 陈鑫, 郑明初, 陈虹. 用酶法水解酒糟生产新型调味品的研究 [J]. 农产品加工(学刊), 2006, (9):14−17.CHEN X, ZHENG M C, CHEN H. Processing study on enzymic hydrolyzed lees to a new condiment [J]. Academic Periodical of Farm Products Processing, 2006(9): 14−17. (in Chinese) [10] 杨婷婷, 孙万成, 罗毅皓, 等. 青稞酒糟多肽的制备及其活性研究 [J]. 食品与发酵工业, 2022, 48(20):217−224.YANG T T, SUN W C, LUO Y H, et al. Preparation and activity of highland barley fermentation spent polypeptide [J]. Food and Fermentation Industries, 2022, 48(20): 217−224. (in Chinese) [11] 杨淑纯, 王宏, 白卫东, 等. 超声辅助酶解制备客家黄酒糟多肽工艺优化及ACE抑制活性研究[C]// 中国食品科学技术学会第十九届年会论文摘要集. 2022: 306−307.YANG S C, WANG H, BAI W D, et al. Optimization of ultrasound-assisted enzymatic extraction and screenging of ACE inhibitory peptides from Hakka rice wine lees[C]// Abstract of the 19th annual conference of chinese institute of food science and technology. 2022: 306−307. (in Chinese) [12] 国家国内贸易局. 蛋白酶活力测定法: SB/T 10317-1999[S]. 上海: 上海市酿造科学研究所, 1999. [13] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中蛋白质的测定: GB 5009.5—2016[S]. 北京: 中国标准出版社, 2017. [14] 张国治, 李若昀, 白歌, 等. 用2709碱性蛋白酶水解醇洗花生蛋白制备血管紧张素转化酶(ACE)抑制肽 [J]. 河南工业大学学报(自然科学版), 2016, 37(2):64−71.ZHANG G Z, LI R Y, BAI G, et al. Preparation of ace inhibitory peptides by 2709 alkaline protease hydrolysis alcohol washing peanut protein [J]. Journal of Henan University of Technology (Natural Science Edition), 2016, 37(2): 64−71. (in Chinese) [15] 国家市场监督管理总局, 国家标准化管理委员会. 多肽抗氧化性测定 DPPH和ABTS法: GB/T 39100—2020[S]. 北京: 中国标准出版社, 2020. [16] 邹琳. 鲣鱼黄嘌呤氧化酶抑制肽的酶解制备及功能活性评价[D]. 杭州: 浙江大学, 2019.ZOU L. Enzymatic preparation and functional evaluation of xanthine oxidase inhibitory peptides from skipjack tuna[D]. Hangzhou: Zhejiang University, 2019. (in Chinese) [17] 李伟伟. 沙海蜇ACE抑制肽制备及预防高血压效果与机理研究[D]. 青岛: 中国海洋大学, 2014.LI W W. Study on the preparation of Stomolophus meleagris ACE inhibitory peptide and its preventive effect and mechanism against hypertension[D]. Qingdao: Ocean University of China, 2014. (in Chinese) [18] 王芳, 逄瑞玥. 对大豆肽粉中酸溶蛋白含量测定方法的改进 [J]. 黑龙江粮食, 2005, (5):35−37.WANG F, PANG R Y. Improvement of determination method of acid-soluble protein content in soybean peptide powder [J]. Heilongjiang Grain, 2005(5): 35−37. (in Chinese) [19] 刘丽娜, 李顺峰, 魏书信, 等. 不同蛋白酶对香菇酶解液性质的影响 [J]. 中国酿造, 2022, 41(3):152−157.LIU L N, LI S F, WEI S X, et al. Effects of different protease on the property of Lentinus edodes enzymatic hydrolysate [J]. China Brewing, 2022, 41(3): 152−157. (in Chinese) [20] 韩佳冬, 刘轶, 陈丽清, 等. 降血压肽的构效及其应用研究展望 [J]. 农业机械, 2012, (30):80−82.HAN J D, LIU Y, CHEN L Q, et al. Structure-activity and application prospect of antihypertensive peptides [J]. Farm Machinery, 2012(30): 80−82. (in Chinese) [21] 熊华. 木瓜蛋白酶应用研究进展 [J]. 保鲜与加工, 2006, 6(1):7−8.XIONG H. Application and research development of Carica papaya papain [J]. Storage & Process, 2006, 6(1): 7−8. (in Chinese) [22] 阮晓慧, 韩军岐, 张润光, 等. 食源性生物活性肽制备工艺、功能特性及应用研究进展 [J]. 食品与发酵工业, 2016, 42(6):248−253.RUAN X H, HAN J Q, ZHANG R G, et al. Progress in the preparation, functional properties and applications of food-derived bioactive peptides [J]. Food and Fermentation Industries, 2016, 42(6): 248−253. (in Chinese) [23] NOMAN A, WANG Y X, ZHANG C, et al. Fractionation and purification of antioxidant peptides from Chinese sturgeon (Acipenser sinensis) protein hydrolysates prepared using papain and alcalase 2.4L [J]. Arabian Journal of Chemistry, 2022, 15(12): 104368. doi: 10.1016/j.arabjc.2022.104368 [24] 孙跃如, 林桐, 赵吉春, 等. 谷物源抗氧化肽: 制备、构效及应用 [J]. 食品与发酵工业, 2022, 48(10):299−305.SUN Y R, LIN T, ZHAO J C, et al. Antioxidant peptides from cereals: Preparation, structure-activity and application [J]. Food and Fermentation Industries, 2022, 48(10): 299−305. (in Chinese) [25] 王改琴, 朱秋凤, 张莉莉, 等. 大米蛋白胃蛋白酶酶解物体外抗氧化作用的研究 [J]. 中国饲料, 2010, (7):35−37.WANG G Q, ZHU Q F, ZHANG L L, et al. The antioxidant capacity of rice protein hydrolysates by pepsin in vitro [J]. China Feed, 2010(7): 35−37. (in Chinese) [26] GARMIDOLOVA A, DESSEVA I, MIHAYLOVA D, et al. Papain hydrolysates of lupin proteins with antioxidant, antimicrobial, and acetylcholinesterase inhibitory activities [J]. Applied Sciences, 2022, 12(23): 12370. doi: 10.3390/app122312370 [27] 杜梦珂. 富硒碱性茶蛋白ACE抑制肽的制备、分离纯化及结构鉴定[D]. 上海: 上海师范大学, 2018.DU M K. Study on the preparation, purification and identification of ACE inhibitory activity peptides from Se-enriched tea protein[D]. Shanghai: Shanghai Normal University, 2018. (in Chinese) [28] MURAPA P, DAI J, CHUNG M, et al. Anthocyanin-rich fractions of blackberry extracts reduce UV-induced free radicals and oxidative damage in keratinocytes [J]. Phytotherapy Research:PTR, 2012, 26(1): 106−112. doi: 10.1002/ptr.3510 [29] 贾俊强, 马海乐, 王振斌, 等. 降血压肽的构效关系研究 [J]. 中国粮油学报, 2009, 24(5):110−114.JIA J Q, MA H L, WANG Z B, et al. Structure-activity relationship of antihypertensive peptides [J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(5): 110−114. (in Chinese) [30] SUN X H, UDENIGWE C C. Chemistry and biofunctional significance of bioactive peptide interactions with food and gut components [J]. Journal of Agricultural and Food Chemistry, 2020, 68(46): 12972−12977. doi: 10.1021/acs.jafc.9b07559 [31] MANZOOR M, SINGH J, GANI A. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: in vitro, in silico and in vivo studies[J]. Food Chemistry, 2022, 373(Pt A): 131395. [32] HOU M F, XIANG H, HU X, et al. Novel potential XOD inhibitory peptides derived from Trachinotus ovatus: Isolation, identification and structure-function analysis [J]. Food Bioscience, 2022, 47: 101639. doi: 10.1016/j.fbio.2022.101639 [33] LI Y J, KANG X Y, LI Q Y, et al. Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity [J]. Peptides, 2018, 107: 45−53. doi: 10.1016/j.peptides.2018.08.001 [34] YU Y K, HU J N, MIYAGUCHI Y, et al. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin [J]. Peptides, 2006, 27(11): 2950−2956. doi: 10.1016/j.peptides.2006.05.025 [35] 邵燕秋, 黄卉, 李来好, 等. 鳗鱼骨胶原蛋白ACE抑制肽的制备及性质研究 [J]. 南方水产科学, 2022, 18(6):137−145.SHAO Y Q, HUANG H, LI L H, et al. Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica) [J]. South China Fisheries Science, 2022, 18(6): 137−145. (in Chinese)