• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红曲糟源酶解蛋白肽的功能性评价

侯蕊 梁璋成 林晓婕 林晓姿 张秀红 何志刚

侯蕊,梁璋成,林晓婕,等. 红曲糟源酶解蛋白肽的功能性评价 [J]. 福建农业学报,2024,39(3):354−361 doi: 10.19303/j.issn.1008-0384.2024.03.013
引用本文: 侯蕊,梁璋成,林晓婕,等. 红曲糟源酶解蛋白肽的功能性评价 [J]. 福建农业学报,2024,39(3):354−361 doi: 10.19303/j.issn.1008-0384.2024.03.013
HOU R, LIANG Z C, LIN X J, et al. Functional Evaluation of Enzymatic Hydrolyzed Peptides from Hongqu Glutinous Rice Wine Grains Protein [J]. Fujian Journal of Agricultural Sciences,2024,39(3):354−361 doi: 10.19303/j.issn.1008-0384.2024.03.013
Citation: HOU R, LIANG Z C, LIN X J, et al. Functional Evaluation of Enzymatic Hydrolyzed Peptides from Hongqu Glutinous Rice Wine Grains Protein [J]. Fujian Journal of Agricultural Sciences,2024,39(3):354−361 doi: 10.19303/j.issn.1008-0384.2024.03.013

红曲糟源酶解蛋白肽的功能性评价

doi: 10.19303/j.issn.1008-0384.2024.03.013
基金项目: 福建省科技计划公益类专项(2022R1032009、2023R1098)
详细信息
    作者简介:

    侯蕊(1998 —),女,硕士研究生,主要从事食品生物工程研究,E-mail:838135373@qq.com

    通讯作者:

    张秀红(1970 —),女,教授,主要从事食品微生物的分离纯化及应用研究,E-mail:cwm_ming@163.com

    何志刚(1964 —),男,研究员,主要从事农产品贮藏与加工、食品发酵研究,E-mail:njgzx@163.com

  • 中图分类号: TS201

Functional Evaluation of Enzymatic Hydrolyzed Peptides from Hongqu Glutinous Rice Wine Grains Protein

  • 摘要:   目的  研究不同蛋白酶对红曲糟酶解的效果,并对其酶解液进行功能性评价,为红曲糟源蛋白肽的研发制备提供理论支持。  方法  以提高蛋白含量后的红曲糟为原料,利用碱性蛋白酶、胰蛋白酶、动物蛋白酶、木瓜蛋白酶、菠萝蛋白酶、胃蛋白酶、复配酶制剂F106、酵母抽提酶等不同蛋白酶进行酶解,考察其酶解率、1,1-二苯基-2-三硝基苯肼(DPPH)和2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐(ABTS)自由基清除抗氧化能力、黄嘌呤氧化酶(Xanthine oxidase, XOD)和血管紧张素转化酶(Angiotensin converting enzyme, ACE)抑制活性等生物活性功能。  结果  蛋白酶解率最高的为动物蛋白酶和胰蛋白酶酶解处理,分别为(71.43±1.03)%和(70.20±0.32)%。DPPH自由基清除抗氧化能力最优的是胃蛋白酶、碱性蛋白酶和酵母抽提酶酶解处理,蛋白肽的半数效应浓度(Median effective concentration, EC50)分别为(2.78±0.34)mg·mL−1、(3.02±0.03)mg·mL−1、(3.24±0.65)mg·mL−1;ABTS自由基清除抗氧化能力、XOD抑制活性能力最优的均为胃蛋白酶和碱性蛋白酶酶解液,其蛋白肽的EC50值分别为(1.54±0.07)mg·mL−1、(6.45±0.27)mg·mL−1和(10.71±0.06)mg·mL−1、(17.68±0.04)mg·mL−1,二者的XOD半数抑制指数分别为(1.28±0.01)、(1.78±0.03);ACE抑制活性最优的为碱性蛋白酶酶解液和木瓜蛋白酶酶解液,蛋白肽的EC50值均为(0.27±0.01)mg·mL−1,半数抑制指数分别为(118.40±3.53)、(98.35±1.95)。  结论  红曲糟源蛋白经不同蛋白酶酶解后的肽段具有不同的生物活性,其中以胃蛋白酶酶解的XOD抑制活性能力较强,碱性蛋白酶和木瓜蛋白酶酶解的ACE抑制活性较优。
  • 表  1  蛋白酶酶解条件

    Table  1.   Enzymatic hydrolysis conditions of protease

    蛋白酶
    Proteinase
    酶活测定
    Enzyme activity test/( U·g−1)
    pH 温度
    Temperature/℃
    时间
    Time/h
    动物蛋白酶 60823±133 7 55 4
    复配酶制剂F106 24963±188 7 50 4
    菠萝蛋白酶 37956±225 6.5 45 4
    木瓜蛋白酶 31022±258 7 50 4
    碱性蛋白酶 75999±293 9.5 50 4
    胰蛋白酶 62866±165 8 50 4
    酵母抽提酶 79572±122 6.5 55 4
    胃蛋白酶 3759±64 2.5 37 4
    酶活参照行业标准SB/T 10317-1999蛋白酶活力测定[12]
    Enzyme activity reference industry standard SB/T 10317-1999 protease activity determination.
    下载: 导出CSV

    表  2  不同蛋白酶的红曲糟蛋白肽酶解率

    Table  2.   Proteolysis rate of Hongqu glutinous rice wine grains protein with different proteases

    酶解液
    Enzymolysis liquid
    酶解蛋白肽粗蛋白含量
    Crude protein content of enzymatic
    hydrolysis protein peptide/(g·hg−1)
    酶解蛋白肽酸溶性蛋白含量
    Content of acid-soluble protein in enzymatic
    hydrolysis protein peptide/(g·hg−1)
    酶解率
    Enzymolysis rate/%
    动物蛋白酶4.12±0.02 Aa4.11±0.05 Aa71.43±1.03 Aa
    复配酶制剂F1063.19±0.09 BCbc3.15±0.15 Bc50.17±1.87 Cc
    菠萝蛋白酶1.94±0.02 Ed1.94±0.05 De30.42±1.03 Ee
    木瓜蛋白酶2.66±0.03 CDc2.64±0.07 Cd42.94±1.09 Dd
    碱性蛋白酶3.17±0.02 BCb3.15±0.05 Bc56.64±0.64 Bb
    胰蛋白酶4.14±0.01 Aa3.94±0.04 Aa70.20±0.32 Aa
    酵母抽提酶3.65±0.07 ABb3.56±0.08 Bb57.94±1.52 Bb
    胃蛋白酶2.40±0.01 DEd1.37±0.01 Df21.93±0.01 Ff
    1)原料上清液蛋白含量为(0.45±0.01)g·hg−1,酸溶性蛋白含量为(0.43±0.01)g·hg−1。2)不同样品数据间差异达显著水平和极显著水平分别采用小写字母(P<0.05)与大写字母(P<0.01)表示,下同。
    1)The protein content of the supernatant was (0.45±0.01) g·hg−1, and the acid-soluble protein content was (0.43±0.01) g·hg−1. 2)The significance between different sample data was expressed in lowercase letters (P<0.05 ) and uppercase letters (P< 0.01 ). Same for below.
    下载: 导出CSV

    表  3  不同蛋白酶处理红曲糟酶解蛋白肽的DPPH自由基清除抗氧化能力

    Table  3.   DPPH radical scavenging antioxidant ability of enzymatic peptides from Hongqu glutinous rice wine grains protein treated with different proteases

    酶解蛋白肽
    Protein hydrolysated peptide
    EC50/
    (mg·mL−1)
    AO值
    AO value
    动物蛋白酶 4.62±0.54 Bb 13.67±1.59 Bb
    复配酶制剂F106 4.53±0.49 BCb 13.40±1.44 Bb
    菠萝蛋白酶 6.17±0.43 Aa 18.25±1.27 Aa
    木瓜蛋白酶 3.81±0.25 BCDb 11.27±0.37 BCDcd
    碱性蛋白酶 3.02±0.03 CDc 8.92±0.15 Dde
    胰蛋白酶 4.40±0.11 BCb 13.01±0.32 BCbc
    酵母抽提酶 3.24±0.65 CDc 9.59±1.91 CDde
    胃蛋白酶 2.78±0.34 Dc 8.23±0.50 De
    1)EC50以酸溶性蛋白计。下同。2)本次试验以(1.00±0.00)mg·mL−1谷胱甘肽为阳性对照,EC50为(0.338±0.00)mg·mL−1,AO值为(1.00±0.00)。3)AO值代表各处理组与(1.00±0.00)mg·mL−1谷胱甘肽EC50的比值,比值越小,清除能力越强。下同。
    1)EC50 was calculated as acid-soluble protein. Same for below.2)In this experiment, (1.00±0.00) mg·mL−1 glutathione was used as the positive control, the EC50 was (0.338±0.00) mg·mL−1, and the AO value was (1.00±0.00).3)AO value represents the ratio of each treatment group to (1.00±0.00) mg·mL−1 glutathione EC50. The smaller the ratio, the stronger the scavenging ability. Same for below.
    下载: 导出CSV

    表  4  不同蛋白酶处理红曲糟酶解蛋白肽的ABTS自由基清除抗氧化能力

    Table  4.   ABTS radical scavenging antioxidant ability of enzymatic peptides from Hongqu glutinous rice wine grains protein-treated with different proteases

    酶解蛋白肽
    Protein hydrolysated peptide
    EC50/
    (mg·mL−1)
    AO值
    AO value
    动物蛋白酶 3.65±0.30 Cc 114.89±9.65 Cc
    复配酶制剂F106 1.82±0.12 Ee 57.58±3.86 Ee
    菠萝蛋白酶 1.91±0.12 Ee 60.65±3.89 Ee
    木瓜蛋白酶 1.84±0.06 Ee 58.24±1.78 Ee
    碱性蛋白酶 6.45±0.27 Aa 204.30±8.65 Aa
    胰蛋白酶 3.67±0.36 Bb 118.50±6.97 Bb
    酵母蛋白酶 2.25±0.28 Dd 71.24±5.79 Dd
    胃蛋白酶 1.54±0.07 Ff 48.73±2.27 Ff
    本次试验以(1.00±0.00)mg·mL−1的谷胱甘肽为阳性对照,EC50为(0.032±0.00)mg·mL−1,AO值为(1.00±0.00)。
    In this experiment, (1.00±0.00) mg·mL−1 glutathione was used as a positive control, the EC50 was (0.032±0.00) mg·mL−1, and the AO value was (1.00±0.00).
    下载: 导出CSV

    表  5  不同蛋白酶处理对红曲酒糟酶解蛋白肽的XOD抑制活性的影响

    Table  5.   Effects of different protease treatments on XOD inhibitory activity of enzymatic peptides from Hongqu glutinous rice wine grains protein

    酶解蛋白肽
    Protein hydrolysated peptide
    EC50/
    (mg·mL−1)
    半数抑制指数
    Half inhibition index
    动物蛋白酶 24.11±0.00 Aa 1.71±0.02 Ab
    复配酶制剂F106 20.93±0.03 Cc 1.50±0.02 Bc
    木瓜蛋白酶 22.15±0.12 BCb 1.19±0.03 Ce
    碱性蛋白酶 17.68±0.04 Dd 1.78±0.03 Aa
    胰蛋白酶 22.79±0.04 ABb 1.73±0.02 Aab
    酵母抽提酶 23.97±0.14 Aa 1.48±0.04 Bc
    胃蛋白酶 10.71±0.06 Ee 1.28±0.01 Cd
    菠萝蛋白酶
    表中“—”表示未检出。
    “—” in the table indicates that it is not detected.
    下载: 导出CSV

    表  6  不同蛋白酶处理对红曲酒糟酶解蛋白肽的ACE抑制活性的影响

    Table  6.   Effects of different protease treatments on ACE inhibitory activity of enzymatic peptides from Hongqu glutinous rice wine grains protein

    酶解蛋白肽
    Protein hydrolysated peptide
    EC50/
    (mg·mL−1)
    半数抑制指数
    Half inhibition index
    动物蛋白酶 0.49±0.01 Cc 83.37±1.50 Cc
    复配F106 1.66±0.19 Aa 19.19±0.83 Hh
    菠萝蛋白酶 0.42±0.06 CDc 46.93±0.66 Ee
    木瓜蛋白酶 0.27±0.01 Dd 98.35±1.95 Bb
    碱性蛋白酶 0.27±0.01 Dd 118.40±3.35 Aa
    胰蛋白酶 0.95±0.09 Bb 41.20±1.35 Ff
    酵母抽提酶 0.53±0.03 Cc 68.63±1.64 Dd
    胃蛋白酶 0.51±0.02 Cc 26.88±1.05 Gg
    下载: 导出CSV
  • [1] 楼芳菲, 姜健美, 傅明亮, 等. 黄酒糟蛋白的酶法提取工艺研究 [J]. 中国食品学报, 2009, 9(1):112−117.

    LOU F F, JIANG J M, FU M L, et al. A study on the enzymic extraction technology of the rice wine grains protein [J]. Journal of Chinese Institute of Food Science and Technology, 2009, 9(1): 112−117. (in Chinese)
    [2] 左楠楠, 王晓伟, 金海如. 酶法提取黄酒糟蛋白工艺研究 [J]. 山西农业科学, 2012, 40(12):1305−1307,1318. doi: 10.3969/j.issn.1002-2481.2012.12.21

    ZUO N N, WANG X W, JIN H R. Study on enzymic extraction technology of the rice wine grains stillage protein [J]. Journal of Shanxi Agricultural Sciences, 2012, 40(12): 1305−1307,1318. (in Chinese) doi: 10.3969/j.issn.1002-2481.2012.12.21
    [3] 林晓婕, 何志刚, 梁璋成, 等. 红曲黄酒糟蛋白酶解物制备工艺优化及营养评价 [J]. 中国粮油学报, 2019, 34(1):43−49.

    LIN X J, HE Z G, LIANG Z C, et al. Optimization of preparation technology of Hongqu glutinous rice wine grains protein hydrolysate and nutrition value [J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(1): 43−49. (in Chinese)
    [4] 林晓婕, 梁璋成, 苏昊, 等. 一种红曲糟抗热肽剂及其制备方法与应用: CN112626157B[P]. 2022-12-06.
    [5] 赵燚涛, 梁璋成, 任香芸, 等. 红曲糟固态制曲对米曲霉3.042产孢子及产酶特性影响 [J]. 福建农业学报, 2023, 38(2):238−244.

    ZHAO Y T, LIANG Z C, REN X Y, et al. Effects of solid-state fermentation of Hongqu rice wine grains on spore production and enzyme-production characteristics of Aspergillus oryzae 3.042 [J]. Fujian Journal of Agricultural Sciences, 2023, 38(2): 238−244. (in Chinese)
    [6] YAO K Y, WEI Z H, XIE Y Y, et al. Lactation performance and nitrogen utilization of dairy cows on diets including unfermented or fermented yellow wine lees mix [J]. Livestock Science, 2020, 236: 104025. doi: 10.1016/j.livsci.2020.104025
    [7] 李华, 施佳慧. 黄酒糟的氨基酸组成及脂类成分分析 [J]. 安徽农业科学, 2009, 37(34):17142−17143.

    LI H, SHI J H. Analysis on amino acid composition and lipid of yellow wine lees [J]. Journal of Anhui Agricultural Sciences, 2009, 37(34): 17142−17143. (in Chinese)
    [8] 万吉志, 冷云伟, 吴根江, 等. 综合利用黄酒糟生产食醋的研究 [J]. 中国酿造, 2016, 35(1):170−173.

    WAN J Z, LENG Y W, WU G J, et al. Comprehensive utilization of Chinese rice wine vinasse for vinegar production [J]. China Brewing, 2016, 35(1): 170−173. (in Chinese)
    [9] 陈鑫, 郑明初, 陈虹. 用酶法水解酒糟生产新型调味品的研究 [J]. 农产品加工(学刊), 2006, (9):14−17.

    CHEN X, ZHENG M C, CHEN H. Processing study on enzymic hydrolyzed lees to a new condiment [J]. Academic Periodical of Farm Products Processing, 2006(9): 14−17. (in Chinese)
    [10] 杨婷婷, 孙万成, 罗毅皓, 等. 青稞酒糟多肽的制备及其活性研究 [J]. 食品与发酵工业, 2022, 48(20):217−224.

    YANG T T, SUN W C, LUO Y H, et al. Preparation and activity of highland barley fermentation spent polypeptide [J]. Food and Fermentation Industries, 2022, 48(20): 217−224. (in Chinese)
    [11] 杨淑纯, 王宏, 白卫东, 等. 超声辅助酶解制备客家黄酒糟多肽工艺优化及ACE抑制活性研究[C]// 中国食品科学技术学会第十九届年会论文摘要集. 2022: 306−307.

    YANG S C, WANG H, BAI W D, et al. Optimization of ultrasound-assisted enzymatic extraction and screenging of ACE inhibitory peptides from Hakka rice wine lees[C]// Abstract of the 19th annual conference of chinese institute of food science and technology. 2022: 306−307. (in Chinese)
    [12] 国家国内贸易局. 蛋白酶活力测定法: SB/T 10317-1999[S]. 上海: 上海市酿造科学研究所, 1999.
    [13] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中蛋白质的测定: GB 5009.5—2016[S]. 北京: 中国标准出版社, 2017.
    [14] 张国治, 李若昀, 白歌, 等. 用2709碱性蛋白酶水解醇洗花生蛋白制备血管紧张素转化酶(ACE)抑制肽 [J]. 河南工业大学学报(自然科学版), 2016, 37(2):64−71.

    ZHANG G Z, LI R Y, BAI G, et al. Preparation of ace inhibitory peptides by 2709 alkaline protease hydrolysis alcohol washing peanut protein [J]. Journal of Henan University of Technology (Natural Science Edition), 2016, 37(2): 64−71. (in Chinese)
    [15] 国家市场监督管理总局, 国家标准化管理委员会. 多肽抗氧化性测定 DPPH和ABTS法: GB/T 39100—2020[S]. 北京: 中国标准出版社, 2020.
    [16] 邹琳. 鲣鱼黄嘌呤氧化酶抑制肽的酶解制备及功能活性评价[D]. 杭州: 浙江大学, 2019.

    ZOU L. Enzymatic preparation and functional evaluation of xanthine oxidase inhibitory peptides from skipjack tuna[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
    [17] 李伟伟. 沙海蜇ACE抑制肽制备及预防高血压效果与机理研究[D]. 青岛: 中国海洋大学, 2014.

    LI W W. Study on the preparation of Stomolophus meleagris ACE inhibitory peptide and its preventive effect and mechanism against hypertension[D]. Qingdao: Ocean University of China, 2014. (in Chinese)
    [18] 王芳, 逄瑞玥. 对大豆肽粉中酸溶蛋白含量测定方法的改进 [J]. 黑龙江粮食, 2005, (5):35−37.

    WANG F, PANG R Y. Improvement of determination method of acid-soluble protein content in soybean peptide powder [J]. Heilongjiang Grain, 2005(5): 35−37. (in Chinese)
    [19] 刘丽娜, 李顺峰, 魏书信, 等. 不同蛋白酶对香菇酶解液性质的影响 [J]. 中国酿造, 2022, 41(3):152−157.

    LIU L N, LI S F, WEI S X, et al. Effects of different protease on the property of Lentinus edodes enzymatic hydrolysate [J]. China Brewing, 2022, 41(3): 152−157. (in Chinese)
    [20] 韩佳冬, 刘轶, 陈丽清, 等. 降血压肽的构效及其应用研究展望 [J]. 农业机械, 2012, (30):80−82.

    HAN J D, LIU Y, CHEN L Q, et al. Structure-activity and application prospect of antihypertensive peptides [J]. Farm Machinery, 2012(30): 80−82. (in Chinese)
    [21] 熊华. 木瓜蛋白酶应用研究进展 [J]. 保鲜与加工, 2006, 6(1):7−8.

    XIONG H. Application and research development of Carica papaya papain [J]. Storage & Process, 2006, 6(1): 7−8. (in Chinese)
    [22] 阮晓慧, 韩军岐, 张润光, 等. 食源性生物活性肽制备工艺、功能特性及应用研究进展 [J]. 食品与发酵工业, 2016, 42(6):248−253.

    RUAN X H, HAN J Q, ZHANG R G, et al. Progress in the preparation, functional properties and applications of food-derived bioactive peptides [J]. Food and Fermentation Industries, 2016, 42(6): 248−253. (in Chinese)
    [23] NOMAN A, WANG Y X, ZHANG C, et al. Fractionation and purification of antioxidant peptides from Chinese sturgeon (Acipenser sinensis) protein hydrolysates prepared using papain and alcalase 2.4L [J]. Arabian Journal of Chemistry, 2022, 15(12): 104368. doi: 10.1016/j.arabjc.2022.104368
    [24] 孙跃如, 林桐, 赵吉春, 等. 谷物源抗氧化肽: 制备、构效及应用 [J]. 食品与发酵工业, 2022, 48(10):299−305.

    SUN Y R, LIN T, ZHAO J C, et al. Antioxidant peptides from cereals: Preparation, structure-activity and application [J]. Food and Fermentation Industries, 2022, 48(10): 299−305. (in Chinese)
    [25] 王改琴, 朱秋凤, 张莉莉, 等. 大米蛋白胃蛋白酶酶解物体外抗氧化作用的研究 [J]. 中国饲料, 2010, (7):35−37.

    WANG G Q, ZHU Q F, ZHANG L L, et al. The antioxidant capacity of rice protein hydrolysates by pepsin in vitro [J]. China Feed, 2010(7): 35−37. (in Chinese)
    [26] GARMIDOLOVA A, DESSEVA I, MIHAYLOVA D, et al. Papain hydrolysates of lupin proteins with antioxidant, antimicrobial, and acetylcholinesterase inhibitory activities [J]. Applied Sciences, 2022, 12(23): 12370. doi: 10.3390/app122312370
    [27] 杜梦珂. 富硒碱性茶蛋白ACE抑制肽的制备、分离纯化及结构鉴定[D]. 上海: 上海师范大学, 2018.

    DU M K. Study on the preparation, purification and identification of ACE inhibitory activity peptides from Se-enriched tea protein[D]. Shanghai: Shanghai Normal University, 2018. (in Chinese)
    [28] MURAPA P, DAI J, CHUNG M, et al. Anthocyanin-rich fractions of blackberry extracts reduce UV-induced free radicals and oxidative damage in keratinocytes [J]. Phytotherapy Research:PTR, 2012, 26(1): 106−112. doi: 10.1002/ptr.3510
    [29] 贾俊强, 马海乐, 王振斌, 等. 降血压肽的构效关系研究 [J]. 中国粮油学报, 2009, 24(5):110−114.

    JIA J Q, MA H L, WANG Z B, et al. Structure-activity relationship of antihypertensive peptides [J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(5): 110−114. (in Chinese)
    [30] SUN X H, UDENIGWE C C. Chemistry and biofunctional significance of bioactive peptide interactions with food and gut components [J]. Journal of Agricultural and Food Chemistry, 2020, 68(46): 12972−12977. doi: 10.1021/acs.jafc.9b07559
    [31] MANZOOR M, SINGH J, GANI A. Exploration of bioactive peptides from various origin as promising nutraceutical treasures: in vitro, in silico and in vivo studies[J]. Food Chemistry, 2022, 373(Pt A): 131395.
    [32] HOU M F, XIANG H, HU X, et al. Novel potential XOD inhibitory peptides derived from Trachinotus ovatus: Isolation, identification and structure-function analysis [J]. Food Bioscience, 2022, 47: 101639. doi: 10.1016/j.fbio.2022.101639
    [33] LI Y J, KANG X Y, LI Q Y, et al. Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity [J]. Peptides, 2018, 107: 45−53. doi: 10.1016/j.peptides.2018.08.001
    [34] YU Y K, HU J N, MIYAGUCHI Y, et al. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin [J]. Peptides, 2006, 27(11): 2950−2956. doi: 10.1016/j.peptides.2006.05.025
    [35] 邵燕秋, 黄卉, 李来好, 等. 鳗鱼骨胶原蛋白ACE抑制肽的制备及性质研究 [J]. 南方水产科学, 2022, 18(6):137−145.

    SHAO Y Q, HUANG H, LI L H, et al. Preparation and properties of collagen ACE inhibitory peptides from bone of eel (Anguilla japonica) [J]. South China Fisheries Science, 2022, 18(6): 137−145. (in Chinese)
  • 加载中
计量
  • 文章访问数:  46
  • HTML全文浏览量:  26
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2024-01-25
  • 网络出版日期:  2024-05-08
  • 刊出日期:  2024-03-28

目录

    /

    返回文章
    返回