Effects of Low Temperature and Poor Lighting on Anthocyanin Content and Fruit Quality of Eggplant
-
摘要:
目的 探究低温、弱光、低温弱光处理对茄子幼苗期、花期、果期花青素含量的影响,以及对茄子品质的影响,为茄子的优质培育以及高产栽培奠定理论基础。 方法 以紫黑茄秀娘为试验材料,分别在幼苗期、花期、果期进行低温(18 ℃/13 ℃,250 μmol·m−2·s−1)、弱光(25 ℃/20 ℃,120 μmol·m−2·s−1)、低温弱光(18 ℃/13 ℃,120 μmol·m−2·s−1)、CK(25 ℃/20 ℃,250 μmol·m−2·s−1)等4个处理,测定幼苗期形态及生理特性,不同时期、不同部位的花青素,以及果期果实的品质。 结果 低温弱光胁迫对幼苗生长存在显著影响,在幼苗期低温对幼苗生长及生理影响显著大于弱光及低温弱光,花青素含量均表现为根<叶片<叶脉<茎;在花期,花青素含量依次为花萼<花瓣;在果期,花青素含量依次为果肉<果柄<果皮。茄子不同时期受到胁迫后,不同部位的花青素含量均呈现弱光<CK<低温弱光<低温,各胁迫下果实色泽指数依次为弱光<CK<低温弱光<低温,可溶性糖含量、可溶性蛋白含量、类黄酮含量、总酚含量均呈现低温<低温弱光<弱光<CK。 结论 低温促进花青素合成;弱光抑制花青素合成;在低温弱光双因素互作下,低温因素对花青素含量的影响起主导作用,花青素的合成大于降解,花青素含量增加。低温、弱光、低温弱光胁迫下茄子品质均下降,其中,低温胁迫对茄子的品质影响最大。 Abstract:Objective Anthocyanin content at various growth stages and fruit quality of eggplants exposed to low temperature and/or deficient light were studied. Methods Purple black eggplant Xiu Niang was grown in a greenhouse under (A) daytime/night temperatures of 18 ℃/13 ℃ with normal lighting at 250 μmol·m−2·s−1, (B) normal temperatures of 25 ℃/20 ℃ with poor lighting at 120 μmol·m−2·s−1, (C) low temperatures of 18 ℃/13 ℃ with poor lighting at 120 μmol·m−2·s−1, or (CK) normal temperatures and lighting. Growth, physiology, anthocyanin contents in different plant parts, and quality of fruit of the eggplants at seedling, flowering, and fruiting stages were monitored. Results The stresses of low temperature and/or poor lighting affected the growth of eggplant seedlings. Low temperature alone (i.e., A) exerted significantly greater effects on the growth and physiology of the seedlings than B or C. The anthocyanin contents in the organs of a seedling ranked stems>leaf veins>leaves>roots. At the flowering stage, the content was higher in the petals than the calyx; and at the fruiting stage, it ranked peels>stalks>fruits>pulp. The anthocyanin content in the plant at all stages under various treatments were B<CK<C<A. The coloration of eggplant was intensified by the treatments in a trend of B<CK<C<A. And the treatments appeared to cause reductions in the order of A<C<B<CK on the soluble sugars, soluble proteins, flavonoids, and total phenols contents in the plants. Conclusion Exposure to low temperature (e.g., 18 ℃ in daytime and 13 ℃ at night) promoted, but poor lighting inhibited, anthocyanin synthesis in eggplant. When both conditions were imposed simultaneously on the plants, the effect of low temperature on anthocyanin overshadowed that of poor lighting. In contrast, the fruit quality suffered by either low temperature, poor lighting, or both, especially low temperature. -
Key words:
- low temperature /
- poor lighting /
- low temperature and poor lighting /
- growth stages /
- plant parts /
- anthocyanin /
- quality
-
表 1 低温、弱光、低温弱光胁迫对茄子幼苗形态及生理特性的影响
Table 1. Effects of Low temperature and poor lighting on growth and physiology of eggplant seedlings
处理
Treatment叶面积
Leaf
area/
mm2根表
面积
Root
surface area/
mm2叶绿素
含量
Chlorophyll
content/
(mg·g−1)Fm' ΦPSII NPQ qp 可溶性蛋白
含量
Soluble
protein
content/
(mg·g−1)可溶性糖
含量
Soluble
sugar
content/
(mg·g−1)丙二醛
含量
MDA/
(mg·g−1)相对电导率
Relative
conductivity/%CK 139.9±15.48b 78.05±2.34a 1.56±0.06a 0.74±0.03a 0.45±0.01a 0.20±0.01c 0.73±0.03b 4.47±0.38c 1.71±0.09c 0.21±0.01c 0.68±0.03 d S1 105.86±10.70c 59.39±2.16c 1.30±0.01c 0.63±0.02b 0.40±0.01b 0.29±0.01a 0.66±0.01c 6.99±0.91a 3.32±0.32a 0.30±0.01a 0.94±0.01a S3 233.69±26.54a 59.00±14.03c 1.21±0.05d 0.59±0.03c 0.33±0.03c 0.29±0.01a 0.57±0.05d 5.72±0.30b 2.11±0.08b 0.28±0.00ab 0.89±0.00b S5 143.78±5.42b 72.02±2.09b 1.41±0.03b 0.62±0.02b 0.46±0.02a 0.26±0.01b 0.79±0.03a 4.82±0.43c 2.15±0.24b 0.26±0.00b 0.80±0.01c 表 2 低温、弱光、低温弱光胁迫下茄子的色泽指数
Table 2. Color indexes of eggplant under various treatments
胁迫
Treatment亮度
Lightness L红色度
Redness a黄色度
Yellowness b颜色指数
CIRGCK 26.74±1.81b 3.72±0.89b 0.15±0.04b 5.93±0.48c S1 23.07±1.03c 1.99±0.32c −1.25±0.30 d 7.11±0.19a S3 34.65±1.21a 6.88±0.57a 2.69±0.46a 4.27±0.13b S5 23.64±0.57c 2.81±0.77bc −0.38±0.04c 6.81±0.19a 表 3 低温、弱光、低温弱光胁迫对茄子果实品质的影响
Table 3. Effects of various treatments on eggplant fruit quality
胁迫
Treatment可溶性糖含量
Soluble sugar content/%可溶性蛋白含量
Soluble protein content/(mg·g−1)类黄酮含量
Flavonoid content/(mg.g−1)总酚含量
Total phenol content/(mg.g-1)CK 8.37±150.48a 14.86±0.14a 0.58±0.02a 2.22±0.04a S1 5.96±150.17 d 9.59±0.51 d 0.31±0.03 d 0.98±0.20 d S3 7.66±150.10b 11.73±0.54b 0.45±0.05b 1.85±0.01b S5 6.86±150.43c 10.38±0.14c 0.40±0.02c 1.51±0.07c -
[1] SARMA A D, SREELAKSHMI Y, SHARMA R. Antioxidant ability of anthocyanins against ascorbic acid oxidation [J]. Phytochemistry, 1997, 45(4): 671−674. doi: 10.1016/S0031-9422(97)00057-5 [2] 李彬彬, 杨俊枫, 高源, 等. 越橘叶片秋季变色期间花青苷和叶绿素的变化特性 [J]. 园艺学报, 2017, 44(12):2361−2371.LI B B, YANG J F, GAO Y, et al. Variations of anthocyanin and chlorophyll contents and composition in ‘northland’ blueberry leaf throughout the color changing process in autumn [J]. Acta Horticulturae Sinica, 2017, 44(12): 2361−2371. (in Chinese) [3] DUFOO-HURTADO M D, ZAVALA-GUTIÉRREZ K G, CAO C M, et al. Low-temperature conditioning of “seed” cloves enhances the expression of phenolic metabolism related genes and anthocyanin content in ‘Coreano’ garlic (Allium sativum) during plant development [J]. Journal of Agricultural and Food Chemistry, 2013, 61(44): 10439−10446. doi: 10.1021/jf403019t [4] ZHANG B, HU Z L, ZHANG Y J, et al. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor) [J]. Plant Cell Reports, 2012, 31(2): 281−289. doi: 10.1007/s00299-011-1162-3 [5] SUN L, LI S C, TANG X P, et al. Transcriptome analysis reveal the putative genes involved in light-induced anthocyanin accumulation in grape ‘Red Globe’ (V. vinifera L. ) [J]. Gene, 2020, 728: 144284. doi: 10.1016/j.gene.2019.144284 [6] SUI X N, DONG X, ZHOU W B. Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution [J]. Food Chemistry, 2014, 163: 163−170. doi: 10.1016/j.foodchem.2014.04.075 [7] 王美玲. 紫甘蓝光合特性的研究[D]. 泰安: 山东农业大学, 2008.WANG M L. Study on photosynthetic characteristics of purple cabbage[D]. Taian: Shandong Agricultural University, 2008. (in Chinese) [8] KIM S, HWANG G, LEE S, et al. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5 [J]. Frontiers in Plant Science, 2017, 8: 1787. doi: 10.3389/fpls.2017.01787 [9] JACKMAN R L, YADA R Y, TUNG M A. A review: Separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis [J]. Journal of Food Biochemistry, 1987, 11(4): 279−308. doi: 10.1111/j.1745-4514.1987.tb00128.x [10] ZHANG S J, QIAN Z, LIU J J, et al. Analysis on stability and antioxidant capacity of color-related components from Dendrobium officinale flower [J]. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica, 2018, 43(10): 2025−2031. [11] 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006: 186-280. [12] 秦燕. 不同热加工处理对花青素结构及抗氧化活性的影响[D]. 南昌: 南昌大学, 2016QIN Y. Structural and antioxidant activities changes of anthocyanin after different thermal treatments[D]. Nanchang: Nanchang University, 2016. (in Chinese) [13] WROLSTAD R E, DURST R W, LEE J. Tracking color and pigment changes in anthocyanin products [J]. Trends in Food Science & Technology, 2005, 16(9): 423−428. [14] FULEKI T, FRANCIS F J. Quantitative methods for anthocyanins. 4. determination of individual anthocyanins in cranberry and cranberry products [J]. Journal of Food Science, 1968, 33(5): 471−478. doi: 10.1111/j.1365-2621.1968.tb03658.x [15] AMIRI M E, FALLAHI E, PARSEH S. Application of ethephon and Aba at 40% veraison advanced maturity and quality of ‘beidaneh ghermez’ grape [J]. Acta Horticulturae, 2010(884): 371−377. [16] 高红, 王书琪, 孔晓妍, 等. 超声波辅助提取杭白菊总黄酮工艺条件的优化 [J]. 酿酒科技, 2019, (8):65−68.GAO H, WANG S Q, KONG X Y, et al. Optimization of ultrasonic-assisted extraction of total flavonoids in Chrysanthemum [J]. Liquor-Making Science & Technology, 2019(8): 65−68. (in Chinese) [17] FILICHKIN S A, MOCKLER T C. Unproductive alternative splicing and nonsense mRNAs: A widespread phenomenon among plant circadian clock genes [J]. Biology Direct, 2012, 7: 20. doi: 10.1186/1745-6150-7-20 [18] HEINRICH S, VALENTIN K, FRICKENHAUS S, et al. Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae) [J]. PLoS One, 2012, 7(8): e44342. doi: 10.1371/journal.pone.0044342 [19] ZHANG W, HUANG W, YANG Q Y, et al. Effect of growth temperature on the electron flow for photorespiration in leaves of tobacco grown in the field [J]. Physiologia Plantarum, 2013, 149(1): 141−150. doi: 10.1111/ppl.12044 [20] HOGEWONING S W, HARBINSON J. Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf [J]. Journal of Experimental Botany, 2007, 58(3): 453−463. [21] 侯伟, 孙爱花, 杨福孙, 等. 低温弱光对西瓜幼苗光合作用和抗氧化酶活性的影响 [J]. 热带作物学报, 2015, 36(7):1232−1237. doi: 10.3969/j.issn.1000-2561.2015.07.008HOU W, SUN A H, YANG F S, et al. Effects of low temperature and low light on photosynthesis and antioxidant enzyme activities of watermelon seedlings [J]. Chinese Journal of Tropical Crops, 2015, 36(7): 1232−1237. (in Chinese) doi: 10.3969/j.issn.1000-2561.2015.07.008 [22] 吴宏琪, 谢天悦, 杨永森, 等. 低温弱光对茄子幼苗抗逆性指标的影响 [J]. 福建农林大学学报(自然科学版), 2021, 50(5):601−610.WU H Q, XIE T Y, YANG Y S, et al. Effect of low temperature and low light on stress resistance of eggplant seedling [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(5): 601−610. (in Chinese) [23] ZHANG Q L, ZHAI J J, SHAO L, et al. Accumulation of anthocyanins: An adaptation strategy of Mikania micrantha to low temperature in winter [J]. Frontiers in Plant Science, 2019, 10: 1049. doi: 10.3389/fpls.2019.01049 [24] NAING A H, LEE J H, PARK K I, et al. Transcriptional control of anthocyanin biosynthesis genes and transcription factors associated with flower coloration patterns in Gerbera hybrida [J]. 3 Biotech, 2018, 8(1): 65. doi: 10.1007/s13205-018-1099-0 [25] GAIOTTI F, PASTORE C, FILIPPETTI I, et al. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis Vinifera L. ) [J]. Scientific Reports, 2018, 8: 8719. doi: 10.1038/s41598-018-26921-4 [26] HE Q, REN Y J, ZHAO W B, et al. Low temperature promotes anthocyanin biosynthesis and related gene expression in the seedlings of purple head Chinese cabbage (Brassica rapa L. ) [J]. Genes, 2020, 11(1): 81. doi: 10.3390/genes11010081 [27] ZHU H F, LI X F, ZHAI W, et al. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino) [J]. PLoS One, 2017, 12(6): e0179305. doi: 10.1371/journal.pone.0179305 [28] MIKI S, WADA K C, TAKENO K. A possible role of an anthocyanin filter in low-intensity light stress-induced flowering in Perilla frutescens var. crispa [J]. Journal of Plant Physiology, 2015, 175: 157−162. doi: 10.1016/j.jplph.2014.12.002 [29] WADA K C, KONDO H, TAKENO K. Obligatory short-day plant, Perilla frutescens var. crispa can flower in response to low-intensity light stress under long-day conditions [J]. Physiologia Plantarum, 2010, 138(3): 339−345. doi: 10.1111/j.1399-3054.2009.01337.x [30] 邵文婷, 刘杨, 韩洪强, 等. 茄子花青素合成相关基因SmMYB的克隆与表达分析 [J]. 园艺学报, 2013, 40(3):467−478.SHAO W T, LIU Y, HAN H Q, et al. Cloning and expression analysis of an anthocyanin-related transcription factor gene SmMYB in eggplant [J]. Acta Horticulturae Sinica, 2013, 40(3): 467−478. (in Chinese) [31] STEYN W J, WAND S J, JACOBS G, et al. Evidence for a photoprotective function of low-temperature-induced anthocyanin accumulation in apple and pear peel [J]. Physiologia Plantarum, 2009, 136(4): 461−472. doi: 10.1111/j.1399-3054.2009.01246.x [32] HUANG D, YUAN Y, TANG Z Z, et al. Retrotransposon promoter of Ruby1 controls both light- and cold-induced accumulation of anthocyanins in blood orange[J]. Plant, Cell & Environment, 2019, 42(11): 3092-3104. [33] WEBER S, DAMEROW L, KUNZ A, et al. Anthocyanin synthesis and light utilisation can be enhanced by reflective mulch - Visualisation of light penetration into a tree canopy [J]. Journal of Plant Physiology, 2019, 233: 52−57. doi: 10.1016/j.jplph.2018.12.008 [34] GUAN L, DAI Z W, WU B H, et al. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries [J]. Planta, 2016, 243(1): 23−41. doi: 10.1007/s00425-015-2391-4 [35] 艾希珍, 马兴庄, 于立明, 等. 弱光下长期亚适温和短期低温对黄瓜生长及光合作用的影响 [J]. 应用生态学报, 2004, 15(11):2091−2094. doi: 10.3321/j.issn:1001-9332.2004.11.020AI X Z, MA X Z, YU L M, et al. Effect of long-term suboptimal temperature and short-term low temperature under low light density on cucumber growth and its photosynthesis [J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2091−2094. (in Chinese) doi: 10.3321/j.issn:1001-9332.2004.11.020 [36] 王永健, 张峰, 许勇, 等. 黄瓜低温弱光耐受性机理及其应用研究的主要进展 [J]. 中国蔬菜, 2005, (S1):7−12. doi: 10.3969/j.issn.1000-6346.2005.z1.002WANG Y J, ZHANG F, XU Y, et al. Research progress on tolerance mechanism and application of cucumber to low temperature and weak light [J]. China Vegetables, 2005(S1): 7−12. (in Chinese) doi: 10.3969/j.issn.1000-6346.2005.z1.002