• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温弱光处理对茄子不同时期花青素含量及果实品质的影响

申宝营 吴宏琪 林碧英

申宝营,吴宏琪,林碧英. 低温弱光处理对茄子不同时期花青素含量及果实品质的影响 [J]. 福建农业学报,2024,39(3):310−319 doi: 10.19303/j.issn.1008-0384.2024.03.008
引用本文: 申宝营,吴宏琪,林碧英. 低温弱光处理对茄子不同时期花青素含量及果实品质的影响 [J]. 福建农业学报,2024,39(3):310−319 doi: 10.19303/j.issn.1008-0384.2024.03.008
SHEN B Y, WU H Q, LIN B Y. Effects of Low Temperature and Poor Lighting on Anthocyanin Content and Fruit Quality of Eggplant [J]. Fujian Journal of Agricultural Sciences,2024,39(3):310−319 doi: 10.19303/j.issn.1008-0384.2024.03.008
Citation: SHEN B Y, WU H Q, LIN B Y. Effects of Low Temperature and Poor Lighting on Anthocyanin Content and Fruit Quality of Eggplant [J]. Fujian Journal of Agricultural Sciences,2024,39(3):310−319 doi: 10.19303/j.issn.1008-0384.2024.03.008

低温弱光处理对茄子不同时期花青素含量及果实品质的影响

doi: 10.19303/j.issn.1008-0384.2024.03.008
基金项目: 福建省教育厅中青年教师教育科研项目(JAT210076);福建农林大学乡村振兴服务团队项目(11899170126);福建农林大学科技创新专项基金(CXZX2020141C)
详细信息
    作者简介:

    申宝营(1987 —),男,博士,主要从事设施园艺、蔬菜生理栽培等方面的研究,E-mail:shenby889@fafu.edu.cn

    通讯作者:

    林碧英(1963 —),女,教授,主要从事蔬菜种质创新、蔬菜生理、栽培、设施园艺学方面的研究, E-mail:546340436@qq.com

  • 中图分类号: S641.1

Effects of Low Temperature and Poor Lighting on Anthocyanin Content and Fruit Quality of Eggplant

  • 摘要:   目的  探究低温、弱光、低温弱光处理对茄子幼苗期、花期、果期花青素含量的影响,以及对茄子品质的影响,为茄子的优质培育以及高产栽培奠定理论基础。  方法  以紫黑茄秀娘为试验材料,分别在幼苗期、花期、果期进行低温(18 ℃/13 ℃,250 μmol·m−2·s−1)、弱光(25 ℃/20 ℃,120 μmol·m−2·s−1)、低温弱光(18 ℃/13 ℃,120 μmol·m−2·s−1)、CK(25 ℃/20 ℃,250 μmol·m−2·s−1)等4个处理,测定幼苗期形态及生理特性,不同时期、不同部位的花青素,以及果期果实的品质。  结果  低温弱光胁迫对幼苗生长存在显著影响,在幼苗期低温对幼苗生长及生理影响显著大于弱光及低温弱光,花青素含量均表现为根<叶片<叶脉<茎;在花期,花青素含量依次为花萼<花瓣;在果期,花青素含量依次为果肉<果柄<果皮。茄子不同时期受到胁迫后,不同部位的花青素含量均呈现弱光<CK<低温弱光<低温,各胁迫下果实色泽指数依次为弱光<CK<低温弱光<低温,可溶性糖含量、可溶性蛋白含量、类黄酮含量、总酚含量均呈现低温<低温弱光<弱光<CK。  结论  低温促进花青素合成;弱光抑制花青素合成;在低温弱光双因素互作下,低温因素对花青素含量的影响起主导作用,花青素的合成大于降解,花青素含量增加。低温、弱光、低温弱光胁迫下茄子品质均下降,其中,低温胁迫对茄子的品质影响最大。
  • 图  1  低温、弱光、低温弱光胁迫对茄子幼苗叶片花青素含量的影响

    图柱上不同小写字母表示不同处理间差异显著(P<0.05),下同。

    Figure  1.  Effects of various treatments on anthocyanin content in leaves of eggplant seedlings

    Data with different lowercase letters on same column indicate significant differences among different treatments (P<0.05). Same for below.

    图  2  低温、弱光、低温弱光胁迫对茄子幼苗叶脉花青素含量的影响

    Figure  2.  Effects of various treatments on anthocyanin content in leaf veins of eggplant seedlings

    图  3  低温、弱光、低温弱光胁迫下茄子幼苗第8 天茎的颜色差异

    Figure  3.  Difference on color of stems of 8-day-old eggplant seedlings under various treatments

    图  4  低温、弱光、低温弱光胁迫对茄子幼苗茎表皮花青素含量的影响

    Figure  4.  Effects of various treatments on anthocyanin content in epidermis of eggplant seedling stems

    图  5  低温、弱光、低温弱光胁迫对茄子幼苗根花青素含量的影响

    Figure  5.  Effects of various treatments on anthocyanin content of eggplant seedling roots

    图  6  低温、弱光、低温弱光胁迫下茄子全开期花瓣的颜色差异

    Figure  6.  Difference on color of eggplant petals in full bloom under various treatments

    图  7  低温、弱光、低温弱光胁迫对茄子花瓣花青素含量的影响

    Figure  7.  Effects of various treatments on anthocyanin content of eggplant petals

    图  8  低温、弱光、低温弱光胁迫下茄子衰落期花萼的颜色差异

    Figure  8.  Difference on color of eggplant calyx under various treatments

    图  9  低温、弱光、低温弱光胁迫对茄子花萼花青素含量的影响

    Figure  9.  Effects of various treatments on anthocyanin content of calycin in eggplants

    图  10  低温、弱光、低温弱光胁迫对茄子果柄花青素含量的影响

    Figure  10.  Effects of various treatments on anthocyanin content of eggplant stalks

    图  11  低温、弱光、低温弱光胁迫下茄子第24 天果实的颜色差异

    Figure  11.  Difference on fruit color of 24-day-old eggplant under various treatments

    图  12  低温、弱光、低温弱光胁迫对茄子果皮花青素含量的影响

    Figure  12.  Effects of various treatments on anthocyanin content of eggplant peels

    图  13  低温、弱光、低温弱光胁迫对茄子果肉花青素含量的影响

    Figure  13.  Effects of various treatments on anthocyanin content of eggplant pulp

    表  1  低温、弱光、低温弱光胁迫对茄子幼苗形态及生理特性的影响

    Table  1.   Effects of Low temperature and poor lighting on growth and physiology of eggplant seedlings

    处理
    Treatment
    叶面积
    Leaf
    area/
    mm2
    根表
    面积
    Root
    surface area/
    mm2
    叶绿素
    含量
    Chlorophyll
    content/
    (mg·g−1
    Fm' ΦPSII NPQ qp 可溶性蛋白
    含量
    Soluble
    protein
    content/
    (mg·g−1
    可溶性糖
    含量
    Soluble
    sugar
    content/
    (mg·g−1
    丙二醛
    含量
    MDA/
    (mg·g−1
    相对电导率
    Relative
    conductivity/%
    CK 139.9±15.48b 78.05±2.34a 1.56±0.06a 0.74±0.03a 0.45±0.01a 0.20±0.01c 0.73±0.03b 4.47±0.38c 1.71±0.09c 0.21±0.01c 0.68±0.03 d
    S1 105.86±10.70c 59.39±2.16c 1.30±0.01c 0.63±0.02b 0.40±0.01b 0.29±0.01a 0.66±0.01c 6.99±0.91a 3.32±0.32a 0.30±0.01a 0.94±0.01a
    S3 233.69±26.54a 59.00±14.03c 1.21±0.05d 0.59±0.03c 0.33±0.03c 0.29±0.01a 0.57±0.05d 5.72±0.30b 2.11±0.08b 0.28±0.00ab 0.89±0.00b
    S5 143.78±5.42b 72.02±2.09b 1.41±0.03b 0.62±0.02b 0.46±0.02a 0.26±0.01b 0.79±0.03a 4.82±0.43c 2.15±0.24b 0.26±0.00b 0.80±0.01c
    下载: 导出CSV

    表  2  低温、弱光、低温弱光胁迫下茄子的色泽指数

    Table  2.   Color indexes of eggplant under various treatments

    胁迫
    Treatment
    亮度
    Lightness L
    红色度
    Redness a
    黄色度
    Yellowness b
    颜色指数
    CIRG
    CK 26.74±1.81b 3.72±0.89b 0.15±0.04b 5.93±0.48c
    S1 23.07±1.03c 1.99±0.32c −1.25±0.30 d 7.11±0.19a
    S3 34.65±1.21a 6.88±0.57a 2.69±0.46a 4.27±0.13b
    S5 23.64±0.57c 2.81±0.77bc −0.38±0.04c 6.81±0.19a
    下载: 导出CSV

    表  3  低温、弱光、低温弱光胁迫对茄子果实品质的影响

    Table  3.   Effects of various treatments on eggplant fruit quality

    胁迫
    Treatment
    可溶性糖含量
    Soluble sugar content/%
    可溶性蛋白含量
    Soluble protein content/(mg·g−1
    类黄酮含量
    Flavonoid content/(mg.g−1
    总酚含量
    Total phenol content/(mg.g-1
    CK 8.37±150.48a 14.86±0.14a 0.58±0.02a 2.22±0.04a
    S1 5.96±150.17 d 9.59±0.51 d 0.31±0.03 d 0.98±0.20 d
    S3 7.66±150.10b 11.73±0.54b 0.45±0.05b 1.85±0.01b
    S5 6.86±150.43c 10.38±0.14c 0.40±0.02c 1.51±0.07c
    下载: 导出CSV
  • [1] SARMA A D, SREELAKSHMI Y, SHARMA R. Antioxidant ability of anthocyanins against ascorbic acid oxidation [J]. Phytochemistry, 1997, 45(4): 671−674. doi: 10.1016/S0031-9422(97)00057-5
    [2] 李彬彬, 杨俊枫, 高源, 等. 越橘叶片秋季变色期间花青苷和叶绿素的变化特性 [J]. 园艺学报, 2017, 44(12):2361−2371.

    LI B B, YANG J F, GAO Y, et al. Variations of anthocyanin and chlorophyll contents and composition in ‘northland’ blueberry leaf throughout the color changing process in autumn [J]. Acta Horticulturae Sinica, 2017, 44(12): 2361−2371. (in Chinese)
    [3] DUFOO-HURTADO M D, ZAVALA-GUTIÉRREZ K G, CAO C M, et al. Low-temperature conditioning of “seed” cloves enhances the expression of phenolic metabolism related genes and anthocyanin content in ‘Coreano’ garlic (Allium sativum) during plant development [J]. Journal of Agricultural and Food Chemistry, 2013, 61(44): 10439−10446. doi: 10.1021/jf403019t
    [4] ZHANG B, HU Z L, ZHANG Y J, et al. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor) [J]. Plant Cell Reports, 2012, 31(2): 281−289. doi: 10.1007/s00299-011-1162-3
    [5] SUN L, LI S C, TANG X P, et al. Transcriptome analysis reveal the putative genes involved in light-induced anthocyanin accumulation in grape ‘Red Globe’ (V. vinifera L. ) [J]. Gene, 2020, 728: 144284. doi: 10.1016/j.gene.2019.144284
    [6] SUI X N, DONG X, ZHOU W B. Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution [J]. Food Chemistry, 2014, 163: 163−170. doi: 10.1016/j.foodchem.2014.04.075
    [7] 王美玲. 紫甘蓝光合特性的研究[D]. 泰安: 山东农业大学, 2008.

    WANG M L. Study on photosynthetic characteristics of purple cabbage[D]. Taian: Shandong Agricultural University, 2008. (in Chinese)
    [8] KIM S, HWANG G, LEE S, et al. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5 [J]. Frontiers in Plant Science, 2017, 8: 1787. doi: 10.3389/fpls.2017.01787
    [9] JACKMAN R L, YADA R Y, TUNG M A. A review: Separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis [J]. Journal of Food Biochemistry, 1987, 11(4): 279−308. doi: 10.1111/j.1745-4514.1987.tb00128.x
    [10] ZHANG S J, QIAN Z, LIU J J, et al. Analysis on stability and antioxidant capacity of color-related components from Dendrobium officinale flower [J]. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica, 2018, 43(10): 2025−2031.
    [11] 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006: 186-280.
    [12] 秦燕. 不同热加工处理对花青素结构及抗氧化活性的影响[D]. 南昌: 南昌大学, 2016

    QIN Y. Structural and antioxidant activities changes of anthocyanin after different thermal treatments[D]. Nanchang: Nanchang University, 2016. (in Chinese)
    [13] WROLSTAD R E, DURST R W, LEE J. Tracking color and pigment changes in anthocyanin products [J]. Trends in Food Science & Technology, 2005, 16(9): 423−428.
    [14] FULEKI T, FRANCIS F J. Quantitative methods for anthocyanins. 4. determination of individual anthocyanins in cranberry and cranberry products [J]. Journal of Food Science, 1968, 33(5): 471−478. doi: 10.1111/j.1365-2621.1968.tb03658.x
    [15] AMIRI M E, FALLAHI E, PARSEH S. Application of ethephon and Aba at 40% veraison advanced maturity and quality of ‘beidaneh ghermez’ grape [J]. Acta Horticulturae, 2010(884): 371−377.
    [16] 高红, 王书琪, 孔晓妍, 等. 超声波辅助提取杭白菊总黄酮工艺条件的优化 [J]. 酿酒科技, 2019, (8):65−68.

    GAO H, WANG S Q, KONG X Y, et al. Optimization of ultrasonic-assisted extraction of total flavonoids in Chrysanthemum [J]. Liquor-Making Science & Technology, 2019(8): 65−68. (in Chinese)
    [17] FILICHKIN S A, MOCKLER T C. Unproductive alternative splicing and nonsense mRNAs: A widespread phenomenon among plant circadian clock genes [J]. Biology Direct, 2012, 7: 20. doi: 10.1186/1745-6150-7-20
    [18] HEINRICH S, VALENTIN K, FRICKENHAUS S, et al. Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae) [J]. PLoS One, 2012, 7(8): e44342. doi: 10.1371/journal.pone.0044342
    [19] ZHANG W, HUANG W, YANG Q Y, et al. Effect of growth temperature on the electron flow for photorespiration in leaves of tobacco grown in the field [J]. Physiologia Plantarum, 2013, 149(1): 141−150. doi: 10.1111/ppl.12044
    [20] HOGEWONING S W, HARBINSON J. Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf [J]. Journal of Experimental Botany, 2007, 58(3): 453−463.
    [21] 侯伟, 孙爱花, 杨福孙, 等. 低温弱光对西瓜幼苗光合作用和抗氧化酶活性的影响 [J]. 热带作物学报, 2015, 36(7):1232−1237. doi: 10.3969/j.issn.1000-2561.2015.07.008

    HOU W, SUN A H, YANG F S, et al. Effects of low temperature and low light on photosynthesis and antioxidant enzyme activities of watermelon seedlings [J]. Chinese Journal of Tropical Crops, 2015, 36(7): 1232−1237. (in Chinese) doi: 10.3969/j.issn.1000-2561.2015.07.008
    [22] 吴宏琪, 谢天悦, 杨永森, 等. 低温弱光对茄子幼苗抗逆性指标的影响 [J]. 福建农林大学学报(自然科学版), 2021, 50(5):601−610.

    WU H Q, XIE T Y, YANG Y S, et al. Effect of low temperature and low light on stress resistance of eggplant seedling [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(5): 601−610. (in Chinese)
    [23] ZHANG Q L, ZHAI J J, SHAO L, et al. Accumulation of anthocyanins: An adaptation strategy of Mikania micrantha to low temperature in winter [J]. Frontiers in Plant Science, 2019, 10: 1049. doi: 10.3389/fpls.2019.01049
    [24] NAING A H, LEE J H, PARK K I, et al. Transcriptional control of anthocyanin biosynthesis genes and transcription factors associated with flower coloration patterns in Gerbera hybrida [J]. 3 Biotech, 2018, 8(1): 65. doi: 10.1007/s13205-018-1099-0
    [25] GAIOTTI F, PASTORE C, FILIPPETTI I, et al. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis Vinifera L. ) [J]. Scientific Reports, 2018, 8: 8719. doi: 10.1038/s41598-018-26921-4
    [26] HE Q, REN Y J, ZHAO W B, et al. Low temperature promotes anthocyanin biosynthesis and related gene expression in the seedlings of purple head Chinese cabbage (Brassica rapa L. ) [J]. Genes, 2020, 11(1): 81. doi: 10.3390/genes11010081
    [27] ZHU H F, LI X F, ZHAI W, et al. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino) [J]. PLoS One, 2017, 12(6): e0179305. doi: 10.1371/journal.pone.0179305
    [28] MIKI S, WADA K C, TAKENO K. A possible role of an anthocyanin filter in low-intensity light stress-induced flowering in Perilla frutescens var. crispa [J]. Journal of Plant Physiology, 2015, 175: 157−162. doi: 10.1016/j.jplph.2014.12.002
    [29] WADA K C, KONDO H, TAKENO K. Obligatory short-day plant, Perilla frutescens var. crispa can flower in response to low-intensity light stress under long-day conditions [J]. Physiologia Plantarum, 2010, 138(3): 339−345. doi: 10.1111/j.1399-3054.2009.01337.x
    [30] 邵文婷, 刘杨, 韩洪强, 等. 茄子花青素合成相关基因SmMYB的克隆与表达分析 [J]. 园艺学报, 2013, 40(3):467−478.

    SHAO W T, LIU Y, HAN H Q, et al. Cloning and expression analysis of an anthocyanin-related transcription factor gene SmMYB in eggplant [J]. Acta Horticulturae Sinica, 2013, 40(3): 467−478. (in Chinese)
    [31] STEYN W J, WAND S J, JACOBS G, et al. Evidence for a photoprotective function of low-temperature-induced anthocyanin accumulation in apple and pear peel [J]. Physiologia Plantarum, 2009, 136(4): 461−472. doi: 10.1111/j.1399-3054.2009.01246.x
    [32] HUANG D, YUAN Y, TANG Z Z, et al. Retrotransposon promoter of Ruby1 controls both light- and cold-induced accumulation of anthocyanins in blood orange[J]. Plant, Cell & Environment, 2019, 42(11): 3092-3104.
    [33] WEBER S, DAMEROW L, KUNZ A, et al. Anthocyanin synthesis and light utilisation can be enhanced by reflective mulch - Visualisation of light penetration into a tree canopy [J]. Journal of Plant Physiology, 2019, 233: 52−57. doi: 10.1016/j.jplph.2018.12.008
    [34] GUAN L, DAI Z W, WU B H, et al. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries [J]. Planta, 2016, 243(1): 23−41. doi: 10.1007/s00425-015-2391-4
    [35] 艾希珍, 马兴庄, 于立明, 等. 弱光下长期亚适温和短期低温对黄瓜生长及光合作用的影响 [J]. 应用生态学报, 2004, 15(11):2091−2094. doi: 10.3321/j.issn:1001-9332.2004.11.020

    AI X Z, MA X Z, YU L M, et al. Effect of long-term suboptimal temperature and short-term low temperature under low light density on cucumber growth and its photosynthesis [J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2091−2094. (in Chinese) doi: 10.3321/j.issn:1001-9332.2004.11.020
    [36] 王永健, 张峰, 许勇, 等. 黄瓜低温弱光耐受性机理及其应用研究的主要进展 [J]. 中国蔬菜, 2005, (S1):7−12. doi: 10.3969/j.issn.1000-6346.2005.z1.002

    WANG Y J, ZHANG F, XU Y, et al. Research progress on tolerance mechanism and application of cucumber to low temperature and weak light [J]. China Vegetables, 2005(S1): 7−12. (in Chinese) doi: 10.3969/j.issn.1000-6346.2005.z1.002
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  119
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-10
  • 录用日期:  2024-03-27
  • 修回日期:  2024-02-22
  • 网络出版日期:  2024-05-08
  • 刊出日期:  2024-03-28

目录

    /

    返回文章
    返回