• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

低温弱光处理对茄子不同时期花青素含量及果实品质的影响

申宝营, 吴宏琪, 林碧英

申宝营,吴宏琪,林碧英. 低温弱光处理对茄子不同时期花青素含量及果实品质的影响 [J]. 福建农业学报,2024,39(3):310−319. DOI: 10.19303/j.issn.1008-0384.2024.03.008
引用本文: 申宝营,吴宏琪,林碧英. 低温弱光处理对茄子不同时期花青素含量及果实品质的影响 [J]. 福建农业学报,2024,39(3):310−319. DOI: 10.19303/j.issn.1008-0384.2024.03.008
SHEN B Y, WU H Q, LIN B Y. Effects of Low Temperature and Poor Lighting on Anthocyanin Content and Fruit Quality of Eggplant [J]. Fujian Journal of Agricultural Sciences,2024,39(3):310−319. DOI: 10.19303/j.issn.1008-0384.2024.03.008
Citation: SHEN B Y, WU H Q, LIN B Y. Effects of Low Temperature and Poor Lighting on Anthocyanin Content and Fruit Quality of Eggplant [J]. Fujian Journal of Agricultural Sciences,2024,39(3):310−319. DOI: 10.19303/j.issn.1008-0384.2024.03.008

低温弱光处理对茄子不同时期花青素含量及果实品质的影响

基金项目: 福建省教育厅中青年教师教育科研项目(JAT210076);福建农林大学乡村振兴服务团队项目(11899170126);福建农林大学科技创新专项基金(CXZX2020141C)
详细信息
    作者简介:

    申宝营(1987 —),男,博士,主要从事设施园艺、蔬菜生理栽培等方面的研究,E-mail:shenby889@fafu.edu.cn

    通讯作者:

    林碧英(1963 —),女,教授,主要从事蔬菜种质创新、蔬菜生理、栽培、设施园艺学方面的研究, E-mail:546340436@qq.com

  • 中图分类号: S641.1

Effects of Low Temperature and Poor Lighting on Anthocyanin Content and Fruit Quality of Eggplant

  • 摘要:
      目的  探究低温、弱光、低温弱光处理对茄子幼苗期、花期、果期花青素含量的影响,以及对茄子品质的影响,为茄子的优质培育以及高产栽培奠定理论基础。
      方法  以紫黑茄秀娘为试验材料,分别在幼苗期、花期、果期进行低温(18 ℃/13 ℃,250 μmol·m−2·s−1)、弱光(25 ℃/20 ℃,120 μmol·m−2·s−1)、低温弱光(18 ℃/13 ℃,120 μmol·m−2·s−1)、CK(25 ℃/20 ℃,250 μmol·m−2·s−1)等4个处理,测定幼苗期形态及生理特性,不同时期、不同部位的花青素,以及果期果实的品质。
      结果  低温弱光胁迫对幼苗生长存在显著影响,在幼苗期低温对幼苗生长及生理影响显著大于弱光及低温弱光,花青素含量均表现为根<叶片<叶脉<茎;在花期,花青素含量依次为花萼<花瓣;在果期,花青素含量依次为果肉<果柄<果皮。茄子不同时期受到胁迫后,不同部位的花青素含量均呈现弱光<CK<低温弱光<低温,各胁迫下果实色泽指数依次为弱光<CK<低温弱光<低温,可溶性糖含量、可溶性蛋白含量、类黄酮含量、总酚含量均呈现低温<低温弱光<弱光<CK。
      结论  低温促进花青素合成;弱光抑制花青素合成;在低温弱光双因素互作下,低温因素对花青素含量的影响起主导作用,花青素的合成大于降解,花青素含量增加。低温、弱光、低温弱光胁迫下茄子品质均下降,其中,低温胁迫对茄子的品质影响最大。
    Abstract:
      Objective   Anthocyanin content at various growth stages and fruit quality of eggplants exposed to low temperature and/or deficient light were studied.
      Methods  Purple black eggplant Xiu Niang was grown in a greenhouse under (A) daytime/night temperatures of 18 ℃/13 ℃ with normal lighting at 250 μmol·m−2·s−1, (B) normal temperatures of 25 ℃/20 ℃ with poor lighting at 120 μmol·m−2·s−1, (C) low temperatures of 18 ℃/13 ℃ with poor lighting at 120 μmol·m−2·s−1, or (CK) normal temperatures and lighting. Growth, physiology, anthocyanin contents in different plant parts, and quality of fruit of the eggplants at seedling, flowering, and fruiting stages were monitored.
      Results  The stresses of low temperature and/or poor lighting affected the growth of eggplant seedlings. Low temperature alone (i.e., A) exerted significantly greater effects on the growth and physiology of the seedlings than B or C. The anthocyanin contents in the organs of a seedling ranked stems>leaf veins>leaves>roots. At the flowering stage, the content was higher in the petals than the calyx; and at the fruiting stage, it ranked peels>stalks>fruits>pulp. The anthocyanin content in the plant at all stages under various treatments were B<CK<C<A. The coloration of eggplant was intensified by the treatments in a trend of B<CK<C<A. And the treatments appeared to cause reductions in the order of A<C<B<CK on the soluble sugars, soluble proteins, flavonoids, and total phenols contents in the plants.
      Conclusion  Exposure to low temperature (e.g., 18 ℃ in daytime and 13 ℃ at night) promoted, but poor lighting inhibited, anthocyanin synthesis in eggplant. When both conditions were imposed simultaneously on the plants, the effect of low temperature on anthocyanin overshadowed that of poor lighting. In contrast, the fruit quality suffered by either low temperature, poor lighting, or both, especially low temperature.
  • 【研究意义】兔巴氏杆菌病是由多杀性巴氏杆菌感染兔引起的一种传染病。该病一年四季均可发生,且所有日龄的兔均可发病。临床上,兔巴氏杆菌病以呼吸道症状多见,也可见中耳炎和结膜炎[1-2]。该病是兔的常发病和多发病,是危害兔产业发展的重要疾病。根据多杀性巴氏杆菌的荚膜抗原可将其分为5种血清型,即A、B、D、E和F型[3]。其中,A和D型菌株是兔群中的优势流行菌株[4-5]。【前人研究进展】F型多杀性巴氏杆菌最早在美国的火鸡中发现[6],该菌株主要感染禽类[7],其感染能引起禽霍乱[8]。然而,研究表明国内外兔群中也存在F型多杀性巴氏杆菌,且该菌株对兔具有强致病性[9-11]。由此可见,兔群中F型多杀性巴氏杆菌的出现,使兔巴氏杆菌病的病因更加复杂,也使该病的确诊更加困难。因此,实现对F型多杀性巴氏杆菌的快速检测,掌握其在兔群中的流行情况,对兔产业的发展具有重要意义。【本研究切入点】目前,用于F型多杀性巴氏杆菌的实验室检测方法有细菌分离鉴定和多重PCR[3, 10]。多杀性巴氏杆菌营养需求高、生长较缓慢,容易受其他生长较快的细菌污染。多重PCR用于多杀性巴氏杆菌的荚膜分型[3],反应体系中包含6对引物,对反应体系的组成和反应条件都要求很高,否则会出现非特异性扩增或假阴性结果。【拟解决的关键问题】为了建立一种快速且简便的F型多杀性巴氏杆菌检测方法,本研究根据多杀性巴氏杆菌kmt1基因和F型多杀性巴氏杆菌fcbD基因的保守序列分别设计了2对特异性引物,建立了检测F型多杀性巴氏杆菌的双重PCR检测方法,为兔源F型多杀性巴氏杆菌的快速检测提供技术支撑。

    2×PCR Mix、pEASY-T1克隆载体、细菌基因组DNA提取试剂盒和胶回收试剂盒购自北京全式金生物技术有限公司。

    兔源A、D和F型多杀性巴氏杆菌(Pasteurella multocida)、支气管败血波氏杆菌(Bordetella bronchiseptica)、肺炎克雷伯菌(Klebsiella pneumonia)、大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)由本实验室分离保存。

    根据GenBank中公布的多杀性巴氏杆菌kmt1基因(登录号:KX348143)和F型多杀性巴氏杆菌的fcbD基因(登录号:AF302467),利用Primer Premier 5.0软件设计了2对分别针对kmt1基因和fcbD基因保守序列的特异性引物,kmt1基因引物序列为:kmt1-F:5′-gttttatgccacttgaaatgggaa-3′/kmt1-R:5′-taagaaacgtaactcaacatggaaatatt-3′;fcbD基因引物序列为:fcbD-F:5′-ctaaagatcttgttcttgctccattg-3′/fcbD-R:5′-tctgcggtaatattatgagtatccac-3′,扩增的目的片段分别为260 bp和490 bp。引物由上海铂尚生物技术有限公司合成。

    以提取的兔源F型多杀性巴氏杆菌基因组DNA为模板,分别利用kmt1基因和fcbD基因引物进行单重PCR扩增。单重PCR反应体系为:2×PCR Mix 25 μL,基因组DNA 1 μL,上下游引物(10 μmol·L−1)各2 μL,灭菌ddH2O 20 μL,共50 μL反应体系。单重PCR反应程序为95 ℃ 5 min;95 ℃ 30 s、59 ℃ 30 s、72 ℃ 30 s,35个循环;72 ℃ 10 min。PCR产物纯化后克隆至pEASY-T1克隆载体,送上海铂尚生物技术有限公司测序。

    kmt1基因和fcbD基因引物调整至40 μmol·L−1,等体积混匀后作为双重PCR的引物。双重PCR反应体系为:2×PCR Mix 25 μL,兔源F型多杀性巴氏杆菌基因组DNA 1 μL,混合引物4 μL,灭菌ddH2O 20 μL,共50 μL反应体系。双重PCR反应程序为95 ℃ 10 min;95 ℃ 30 s、59 ℃ 90 s、72 ℃ 2 min,35个循环;72 ℃ 10 min。在此基础上,设置双重PCR方法的退火温度在54~60 ℃、混合引物终浓度在0.4、0.5、0.6、0.7、0.8、0.9、1.0 μmol·L−1进行优化,确定最佳的退火温度和引物浓度。

    分别以提取的兔源A、D和F型多杀性巴氏杆菌、支气管败血波氏杆菌、肺炎克雷伯菌、大肠杆菌、金黄色葡萄球菌的基因组DNA为模板,应用建立的双重PCR方法进行检测,设置阴性对照(灭菌ddH2O),评估该双重PCR方法的特异性。

    将荚膜F型多杀性巴氏杆菌的基因组DNA 10倍倍比稀释,使双重PCR反应体系中DNA模板的含量为1×107~1×100拷贝·μL−1,设置阴性对照(灭菌ddH2O),评估该方法的敏感性。

    取90份已知结果的病死兔肺脏样品,平均分为3组,每组30份(A型多杀性巴氏杆菌样品5份,D型多杀性巴氏杆菌5份,F型多杀性巴氏杆菌5份,支气管败血波氏杆菌3份,肺炎克雷伯菌3份,大肠杆菌3份,金黄色葡萄球菌3份,阴性样品3份)。利用细菌基因组DNA提取试剂盒分别提取样品的基因组DNA,平均分为3份,利用建立的双重PCR方法分3次检测(每次检测90份),每次检测时每份样品重复3次,统计批内和批间变异系数,评估该双重PCR方法的重复性。

    选取从龙岩、三明、南平、福州和宁德5个地区收集的87份已知结果的呼吸道病死兔肺脏样品,应用本实验建立的双重PCR方法和已报道的多重PCR方法[3]同时对87份临床样品进行检测。统计检测结果,比较两种PCR方法检测结果与已知结果的一致性以及两种PCR方法检测结果的一致性。

    以兔源F型多杀性巴氏杆菌的基因组DNA为模板,利用设计的kmt1基因和fcbD基因引物分别进行单重PCR扩增。结果显示,扩增产物分别为260 bp和490 bp(图1),与预期目的片段大小相符。将上述2条目的片段克隆至pEASY-T1克隆载体并测序,测序结果显示2条目的片段序列与相应参考基因的序列同源性均为100%。

    图  1  单重PCR扩增结果
    注:M:DNA Marker; 1:kmt1基因; 2:fcbD基因; 3: kmt1基因阴性对照; 4: fcbD基因阴性对照 。
    Figure  1.  Detection by single PCR amplification
    Note: M: DNA marker; 1: kmt1 gene; 2: fcbD gene; 3: negative control of kmt1 gene; 4: negative control of fcbD gene.

    以兔源F型多杀性巴氏杆菌的基因组DNA为模板,应用kmt1基因和fcbD基因引物进行双重PCR扩增。结果显示,在同一反应体系中,2对引物均能特异地扩增出相应的目的片段(图2)。在此基础上,进一步对双重PCR的退火温度和引物浓度进行优化。结果显示,当退火温度为54~60 ℃时,该双重PCR的扩增效果均较好(图3);当混合引物浓度为0.8 μmol·L−1时(图4),双重PCR扩增效果最好。退火温度高,则特异性强。因此,确定该双重PCR的最佳反应条件为退火温度60 ℃,混合引物浓度0.8 μmol·L−1

    图  2  双重PCR扩增结果
    注:M:DNA Marker; 1:kmt1和fcbD基因; 2:阴性对照 。
    Figure  2.  Detection by duplex PCR amplification
    Note: M: DNA marker; 1: kmt1 and fcbD genes; 2: negative control.
    图  3  双重PCR方法反应温度的优化
    注:M: DNA Marker; 1: 54 ℃; 2: 54.4 ℃; 3: 55.2 ℃; 4:56.4 ℃; 5:57.8 ℃; 6:59 ℃; 7:59.7 ℃; 8:60 ℃。
    Figure  3.  Optimization on reaction temperature for duplex PCR assay
    Note: M: DNA marker; 1: 54 ℃; 2: 54.4 ℃; 3: 55.2 ℃; 4: 56.4 ℃; 5: 57.8 ℃; 6: 59 ℃; 7: 59.7 ℃; 8: 60 ℃.
    图  4  双重PCR检测方法引物浓度优化
    注:M:DNA Marker; 1~7分别为:0.4、0.5、0.6 、0.7、0.8、0.9、1.0 μmol·L−1
    Figure  4.  Optimization on primer concentration for duplex PCR assay
    Note: M: DNA marker; 1-7: 0.4, 0.5, 0.6 , 0.7, 0.8, 0.9, 1.0 μmol·L−1.

    利用建立的双重PCR能同时特异地扩增出兔源F型多杀性巴氏杆菌的kmt1基因片段和fcbD基因片段,能扩增出兔源A型和D型多杀性巴氏杆菌的kmt1基因片段,对兔源支气管败血波氏杆菌、肺炎克雷伯菌、大肠杆菌、金黄色葡萄球菌和阴性对照(灭菌ddH2O)则为阴性(图5)。结果表明,该双重PCR方法具有较强的特异性。

    图  5  双重PCR检测方法特异性试验
    注:M: DNA Marker;1:F型多杀性巴氏杆菌;2:A型多杀性巴氏杆菌;3:D型多杀性巴氏杆菌;4:支气管败血波氏杆菌;5:肺炎克雷伯菌;6:大肠杆菌;7:金黄色葡萄球菌;8:阴性对照
    Figure  5.  Specificity of duplex PCR assay
    Note: M: DNA marker; 1: serogroup F strain of P. multocida; 2: serogroup A strain of P. multocida; 3: serogroup D strain of P. multocida; 4:B. bronchiseptica; 5: K. pneumonia; 6: E. coli; 7: S. aureus; 8: negative control.

    将兔源F型多杀性巴氏杆菌的基因组DNA 10倍倍比稀释(1×107~1×100拷贝·μL−1)。结果显示,该双重PCR的最低检测限为1×103拷贝·μL−1基因组DNA(图6),表明该双重PCR具有良好的敏感性。

    图  6  双重PCR检测方法敏感性试验
    注:MM:DNA Marker;1~8分别为:1×107, 1×106, 1×105, 1×104, 1×103, 1×102, 1×101, 1×100拷贝·μL−1;9:阴性对照。
    Figure  6.  Sensitivity of duplex PCR assay
    Note: M: DNA marker; 1-8: 1×107 , 1×106 , 1×105 , 1×104, 1×103, 1×102 , 1×101, 1×100 copies·μL−1; 9: negative control.

    应用建立的双重PCR对90份已知结果的病死兔肺脏样品(3组,每组30份)分3批次进行批内和批间重复性试验。结果显示,重复性试验批内和批间结果均一致,表明该双重PCR具有良好的重复性。

    应用建立的双重PCR方法和已报道的多重PCR方法同时对87份已知结果(A型多杀性巴氏杆菌阳性样品30份,D型多杀性巴氏杆菌阳性样品9份,F型多杀性巴氏杆菌阳性样品8份,支气管败血波氏杆菌阳性样品11份,肺炎克雷伯菌阳性样品2份,大肠杆菌阳性样品1份,金黄色葡萄球菌阳性样品3份,阴性样品23份)的呼吸道病死兔肺脏样品进行检测。结果显示,双重PCR检测出多杀性巴氏杆菌阳性样品49份(其中F型多杀性巴氏杆菌阳性样品8份),阴性样品38份。多重PCR检测出多杀性巴氏杆菌阳性样品43份(其中A型多杀性巴氏杆菌阳性样品30份,D型多杀性阳性样品7份,F型多杀性巴氏杆菌阳性样品6份),阴性样品39份,非特异扩增样品5份。双重PCR方法检测结果和已报道的多重PCR方法检测结果与已知结果的符合率分别为97.70%和94.25%。双重PCR方法检测结果与已报道的多重PCR方法检测结果的符合率为93.10%。上述结果表明,本试验建立的双重PCR方法准确性高,具有较好的临床应用价值。

    多杀性巴氏杆菌感染是引起兔呼吸道疾病的重要病原之一,常常引起致死性感染。临床上,致死性病例以50~70日龄的商品兔、怀孕后期母兔和哺乳母兔多见,给养兔业造成严重的经济损失[12]。兔巴氏杆菌病主要由A和D型多杀性巴氏杆菌感染引起[4-5]。F型多杀性巴氏杆菌首次分离自火鸡[6],主要在禽类中流行病且致病性强[7-8]。然而,在国内外兔群中也发现有该菌的存在,且其感染能引起兔的严重致死性呼吸道疾病[9-11]。由此可见,F型多杀性巴氏杆菌在兔群中的出现使兔巴氏杆菌病病因更加复杂,导致该病的确诊更加困难。

    本试验根据多杀性巴氏杆菌的kmt1基因和F型多杀性巴氏杆菌fcbD基因的保守序列分别设计了2对特异性引物,建立了检测F型多杀性巴氏杆菌的双重PCR方法。kmt1基因是多杀性巴氏杆菌的种特异性基因,以该基因为目的基因能建立检测多杀性巴氏杆菌的特异性PCR检测方法[13-14]fcbD基因编码F型多杀性巴氏杆菌荚膜中的软骨素,是F型菌株中的特异性基因,以该基因为目的基因能建立鉴定F型多杀性巴氏杆菌荚膜血清型的多重PCR方法[3]。由此可见,以kmt1基因和fcbD基因为目的基因能建立特异的检测兔源F型多杀性巴氏杆菌的双重PCR检测方法。本试验建立的双重PCR方法快速简便,不仅克服了细菌分离鉴定的费时,还克服了多杀性巴氏杆菌荚膜分型多重PCR方法的费力。此外,该双重PCR方法特异性强、重复性好、准确性高,具有很好的临床应用价值,为掌握兔群中F型多杀性巴氏杆菌的流行情况提供了有力的技术手段。

  • 图  1   低温、弱光、低温弱光胁迫对茄子幼苗叶片花青素含量的影响

    图柱上不同小写字母表示不同处理间差异显著(P<0.05),下同。

    Figure  1.   Effects of various treatments on anthocyanin content in leaves of eggplant seedlings

    Data with different lowercase letters on same column indicate significant differences among different treatments (P<0.05). Same for below.

    图  2   低温、弱光、低温弱光胁迫对茄子幼苗叶脉花青素含量的影响

    Figure  2.   Effects of various treatments on anthocyanin content in leaf veins of eggplant seedlings

    图  3   低温、弱光、低温弱光胁迫下茄子幼苗第8 天茎的颜色差异

    Figure  3.   Difference on color of stems of 8-day-old eggplant seedlings under various treatments

    图  4   低温、弱光、低温弱光胁迫对茄子幼苗茎表皮花青素含量的影响

    Figure  4.   Effects of various treatments on anthocyanin content in epidermis of eggplant seedling stems

    图  5   低温、弱光、低温弱光胁迫对茄子幼苗根花青素含量的影响

    Figure  5.   Effects of various treatments on anthocyanin content of eggplant seedling roots

    图  6   低温、弱光、低温弱光胁迫下茄子全开期花瓣的颜色差异

    Figure  6.   Difference on color of eggplant petals in full bloom under various treatments

    图  7   低温、弱光、低温弱光胁迫对茄子花瓣花青素含量的影响

    Figure  7.   Effects of various treatments on anthocyanin content of eggplant petals

    图  8   低温、弱光、低温弱光胁迫下茄子衰落期花萼的颜色差异

    Figure  8.   Difference on color of eggplant calyx under various treatments

    图  9   低温、弱光、低温弱光胁迫对茄子花萼花青素含量的影响

    Figure  9.   Effects of various treatments on anthocyanin content of calycin in eggplants

    图  10   低温、弱光、低温弱光胁迫对茄子果柄花青素含量的影响

    Figure  10.   Effects of various treatments on anthocyanin content of eggplant stalks

    图  11   低温、弱光、低温弱光胁迫下茄子第24 天果实的颜色差异

    Figure  11.   Difference on fruit color of 24-day-old eggplant under various treatments

    图  12   低温、弱光、低温弱光胁迫对茄子果皮花青素含量的影响

    Figure  12.   Effects of various treatments on anthocyanin content of eggplant peels

    图  13   低温、弱光、低温弱光胁迫对茄子果肉花青素含量的影响

    Figure  13.   Effects of various treatments on anthocyanin content of eggplant pulp

    表  1   低温、弱光、低温弱光胁迫对茄子幼苗形态及生理特性的影响

    Table  1   Effects of Low temperature and poor lighting on growth and physiology of eggplant seedlings

    处理
    Treatment
    叶面积
    Leaf
    area/
    mm2
    根表
    面积
    Root
    surface area/
    mm2
    叶绿素
    含量
    Chlorophyll
    content/
    (mg·g−1
    Fm' ΦPSII NPQ qp 可溶性蛋白
    含量
    Soluble
    protein
    content/
    (mg·g−1
    可溶性糖
    含量
    Soluble
    sugar
    content/
    (mg·g−1
    丙二醛
    含量
    MDA/
    (mg·g−1
    相对电导率
    Relative
    conductivity/%
    CK 139.9±15.48b 78.05±2.34a 1.56±0.06a 0.74±0.03a 0.45±0.01a 0.20±0.01c 0.73±0.03b 4.47±0.38c 1.71±0.09c 0.21±0.01c 0.68±0.03 d
    S1 105.86±10.70c 59.39±2.16c 1.30±0.01c 0.63±0.02b 0.40±0.01b 0.29±0.01a 0.66±0.01c 6.99±0.91a 3.32±0.32a 0.30±0.01a 0.94±0.01a
    S3 233.69±26.54a 59.00±14.03c 1.21±0.05d 0.59±0.03c 0.33±0.03c 0.29±0.01a 0.57±0.05d 5.72±0.30b 2.11±0.08b 0.28±0.00ab 0.89±0.00b
    S5 143.78±5.42b 72.02±2.09b 1.41±0.03b 0.62±0.02b 0.46±0.02a 0.26±0.01b 0.79±0.03a 4.82±0.43c 2.15±0.24b 0.26±0.00b 0.80±0.01c
    下载: 导出CSV

    表  2   低温、弱光、低温弱光胁迫下茄子的色泽指数

    Table  2   Color indexes of eggplant under various treatments

    胁迫
    Treatment
    亮度
    Lightness L
    红色度
    Redness a
    黄色度
    Yellowness b
    颜色指数
    CIRG
    CK 26.74±1.81b 3.72±0.89b 0.15±0.04b 5.93±0.48c
    S1 23.07±1.03c 1.99±0.32c −1.25±0.30 d 7.11±0.19a
    S3 34.65±1.21a 6.88±0.57a 2.69±0.46a 4.27±0.13b
    S5 23.64±0.57c 2.81±0.77bc −0.38±0.04c 6.81±0.19a
    下载: 导出CSV

    表  3   低温、弱光、低温弱光胁迫对茄子果实品质的影响

    Table  3   Effects of various treatments on eggplant fruit quality

    胁迫
    Treatment
    可溶性糖含量
    Soluble sugar content/%
    可溶性蛋白含量
    Soluble protein content/(mg·g−1
    类黄酮含量
    Flavonoid content/(mg.g−1
    总酚含量
    Total phenol content/(mg.g-1
    CK 8.37±150.48a 14.86±0.14a 0.58±0.02a 2.22±0.04a
    S1 5.96±150.17 d 9.59±0.51 d 0.31±0.03 d 0.98±0.20 d
    S3 7.66±150.10b 11.73±0.54b 0.45±0.05b 1.85±0.01b
    S5 6.86±150.43c 10.38±0.14c 0.40±0.02c 1.51±0.07c
    下载: 导出CSV
  • [1]

    SARMA A D, SREELAKSHMI Y, SHARMA R. Antioxidant ability of anthocyanins against ascorbic acid oxidation [J]. Phytochemistry, 1997, 45(4): 671−674. DOI: 10.1016/S0031-9422(97)00057-5

    [2] 李彬彬, 杨俊枫, 高源, 等. 越橘叶片秋季变色期间花青苷和叶绿素的变化特性 [J]. 园艺学报, 2017, 44(12):2361−2371.

    LI B B, YANG J F, GAO Y, et al. Variations of anthocyanin and chlorophyll contents and composition in ‘northland’ blueberry leaf throughout the color changing process in autumn [J]. Acta Horticulturae Sinica, 2017, 44(12): 2361−2371. (in Chinese)

    [3]

    DUFOO-HURTADO M D, ZAVALA-GUTIÉRREZ K G, CAO C M, et al. Low-temperature conditioning of “seed” cloves enhances the expression of phenolic metabolism related genes and anthocyanin content in ‘Coreano’ garlic (Allium sativum) during plant development [J]. Journal of Agricultural and Food Chemistry, 2013, 61(44): 10439−10446. DOI: 10.1021/jf403019t

    [4]

    ZHANG B, HU Z L, ZHANG Y J, et al. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor) [J]. Plant Cell Reports, 2012, 31(2): 281−289. DOI: 10.1007/s00299-011-1162-3

    [5]

    SUN L, LI S C, TANG X P, et al. Transcriptome analysis reveal the putative genes involved in light-induced anthocyanin accumulation in grape ‘Red Globe’ (V. vinifera L. ) [J]. Gene, 2020, 728: 144284. DOI: 10.1016/j.gene.2019.144284

    [6]

    SUI X N, DONG X, ZHOU W B. Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution [J]. Food Chemistry, 2014, 163: 163−170. DOI: 10.1016/j.foodchem.2014.04.075

    [7] 王美玲. 紫甘蓝光合特性的研究[D]. 泰安: 山东农业大学, 2008.

    WANG M L. Study on photosynthetic characteristics of purple cabbage[D]. Taian: Shandong Agricultural University, 2008. (in Chinese)

    [8]

    KIM S, HWANG G, LEE S, et al. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5 [J]. Frontiers in Plant Science, 2017, 8: 1787. DOI: 10.3389/fpls.2017.01787

    [9]

    JACKMAN R L, YADA R Y, TUNG M A. A review: Separation and chemical properties of anthocyanins used for their qualitative and quantitative analysis [J]. Journal of Food Biochemistry, 1987, 11(4): 279−308. DOI: 10.1111/j.1745-4514.1987.tb00128.x

    [10]

    ZHANG S J, QIAN Z, LIU J J, et al. Analysis on stability and antioxidant capacity of color-related components from Dendrobium officinale flower [J]. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica, 2018, 43(10): 2025−2031.

    [11] 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006: 186-280.
    [12] 秦燕. 不同热加工处理对花青素结构及抗氧化活性的影响[D]. 南昌: 南昌大学, 2016

    QIN Y. Structural and antioxidant activities changes of anthocyanin after different thermal treatments[D]. Nanchang: Nanchang University, 2016. (in Chinese)

    [13]

    WROLSTAD R E, DURST R W, LEE J. Tracking color and pigment changes in anthocyanin products [J]. Trends in Food Science & Technology, 2005, 16(9): 423−428.

    [14]

    FULEKI T, FRANCIS F J. Quantitative methods for anthocyanins. 4. determination of individual anthocyanins in cranberry and cranberry products [J]. Journal of Food Science, 1968, 33(5): 471−478. DOI: 10.1111/j.1365-2621.1968.tb03658.x

    [15]

    AMIRI M E, FALLAHI E, PARSEH S. Application of ethephon and Aba at 40% veraison advanced maturity and quality of ‘beidaneh ghermez’ grape [J]. Acta Horticulturae, 2010(884): 371−377.

    [16] 高红, 王书琪, 孔晓妍, 等. 超声波辅助提取杭白菊总黄酮工艺条件的优化 [J]. 酿酒科技, 2019, (8):65−68.

    GAO H, WANG S Q, KONG X Y, et al. Optimization of ultrasonic-assisted extraction of total flavonoids in Chrysanthemum [J]. Liquor-Making Science & Technology, 2019(8): 65−68. (in Chinese)

    [17]

    FILICHKIN S A, MOCKLER T C. Unproductive alternative splicing and nonsense mRNAs: A widespread phenomenon among plant circadian clock genes [J]. Biology Direct, 2012, 7: 20. DOI: 10.1186/1745-6150-7-20

    [18]

    HEINRICH S, VALENTIN K, FRICKENHAUS S, et al. Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae) [J]. PLoS One, 2012, 7(8): e44342. DOI: 10.1371/journal.pone.0044342

    [19]

    ZHANG W, HUANG W, YANG Q Y, et al. Effect of growth temperature on the electron flow for photorespiration in leaves of tobacco grown in the field [J]. Physiologia Plantarum, 2013, 149(1): 141−150. DOI: 10.1111/ppl.12044

    [20]

    HOGEWONING S W, HARBINSON J. Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf [J]. Journal of Experimental Botany, 2007, 58(3): 453−463.

    [21] 侯伟, 孙爱花, 杨福孙, 等. 低温弱光对西瓜幼苗光合作用和抗氧化酶活性的影响 [J]. 热带作物学报, 2015, 36(7):1232−1237. DOI: 10.3969/j.issn.1000-2561.2015.07.008

    HOU W, SUN A H, YANG F S, et al. Effects of low temperature and low light on photosynthesis and antioxidant enzyme activities of watermelon seedlings [J]. Chinese Journal of Tropical Crops, 2015, 36(7): 1232−1237. (in Chinese) DOI: 10.3969/j.issn.1000-2561.2015.07.008

    [22] 吴宏琪, 谢天悦, 杨永森, 等. 低温弱光对茄子幼苗抗逆性指标的影响 [J]. 福建农林大学学报(自然科学版), 2021, 50(5):601−610.

    WU H Q, XIE T Y, YANG Y S, et al. Effect of low temperature and low light on stress resistance of eggplant seedling [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50(5): 601−610. (in Chinese)

    [23]

    ZHANG Q L, ZHAI J J, SHAO L, et al. Accumulation of anthocyanins: An adaptation strategy of Mikania micrantha to low temperature in winter [J]. Frontiers in Plant Science, 2019, 10: 1049. DOI: 10.3389/fpls.2019.01049

    [24]

    NAING A H, LEE J H, PARK K I, et al. Transcriptional control of anthocyanin biosynthesis genes and transcription factors associated with flower coloration patterns in Gerbera hybrida [J]. 3 Biotech, 2018, 8(1): 65. DOI: 10.1007/s13205-018-1099-0

    [25]

    GAIOTTI F, PASTORE C, FILIPPETTI I, et al. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis Vinifera L. ) [J]. Scientific Reports, 2018, 8: 8719. DOI: 10.1038/s41598-018-26921-4

    [26]

    HE Q, REN Y J, ZHAO W B, et al. Low temperature promotes anthocyanin biosynthesis and related gene expression in the seedlings of purple head Chinese cabbage (Brassica rapa L. ) [J]. Genes, 2020, 11(1): 81. DOI: 10.3390/genes11010081

    [27]

    ZHU H F, LI X F, ZHAI W, et al. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino) [J]. PLoS One, 2017, 12(6): e0179305. DOI: 10.1371/journal.pone.0179305

    [28]

    MIKI S, WADA K C, TAKENO K. A possible role of an anthocyanin filter in low-intensity light stress-induced flowering in Perilla frutescens var. crispa [J]. Journal of Plant Physiology, 2015, 175: 157−162. DOI: 10.1016/j.jplph.2014.12.002

    [29]

    WADA K C, KONDO H, TAKENO K. Obligatory short-day plant, Perilla frutescens var. crispa can flower in response to low-intensity light stress under long-day conditions [J]. Physiologia Plantarum, 2010, 138(3): 339−345. DOI: 10.1111/j.1399-3054.2009.01337.x

    [30] 邵文婷, 刘杨, 韩洪强, 等. 茄子花青素合成相关基因SmMYB的克隆与表达分析 [J]. 园艺学报, 2013, 40(3):467−478.

    SHAO W T, LIU Y, HAN H Q, et al. Cloning and expression analysis of an anthocyanin-related transcription factor gene SmMYB in eggplant [J]. Acta Horticulturae Sinica, 2013, 40(3): 467−478. (in Chinese)

    [31]

    STEYN W J, WAND S J, JACOBS G, et al. Evidence for a photoprotective function of low-temperature-induced anthocyanin accumulation in apple and pear peel [J]. Physiologia Plantarum, 2009, 136(4): 461−472. DOI: 10.1111/j.1399-3054.2009.01246.x

    [32]

    HUANG D, YUAN Y, TANG Z Z, et al. Retrotransposon promoter of Ruby1 controls both light- and cold-induced accumulation of anthocyanins in blood orange[J]. Plant, Cell & Environment, 2019, 42(11): 3092-3104.

    [33]

    WEBER S, DAMEROW L, KUNZ A, et al. Anthocyanin synthesis and light utilisation can be enhanced by reflective mulch - Visualisation of light penetration into a tree canopy [J]. Journal of Plant Physiology, 2019, 233: 52−57. DOI: 10.1016/j.jplph.2018.12.008

    [34]

    GUAN L, DAI Z W, WU B H, et al. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries [J]. Planta, 2016, 243(1): 23−41. DOI: 10.1007/s00425-015-2391-4

    [35] 艾希珍, 马兴庄, 于立明, 等. 弱光下长期亚适温和短期低温对黄瓜生长及光合作用的影响 [J]. 应用生态学报, 2004, 15(11):2091−2094. DOI: 10.3321/j.issn:1001-9332.2004.11.020

    AI X Z, MA X Z, YU L M, et al. Effect of long-term suboptimal temperature and short-term low temperature under low light density on cucumber growth and its photosynthesis [J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2091−2094. (in Chinese) DOI: 10.3321/j.issn:1001-9332.2004.11.020

    [36] 王永健, 张峰, 许勇, 等. 黄瓜低温弱光耐受性机理及其应用研究的主要进展 [J]. 中国蔬菜, 2005, (S1):7−12. DOI: 10.3969/j.issn.1000-6346.2005.z1.002

    WANG Y J, ZHANG F, XU Y, et al. Research progress on tolerance mechanism and application of cucumber to low temperature and weak light [J]. China Vegetables, 2005(S1): 7−12. (in Chinese) DOI: 10.3969/j.issn.1000-6346.2005.z1.002

  • 期刊类型引用(5)

    1. 徐翔飞,黄盼,崔雪梅,黄叶娥,季权安,韦强,肖琛闻,鲍国连,刘燕. 猪大肠埃希菌和沙门氏菌双重PCR检测方法的建立. 浙江农业科学. 2023(04): 957-963 . 百度学术
    2. 王锦祥,林松华,陈冬金,孙世坤,陈岩锋,高承芳,桑雷,谢喜平. 兔源F型多杀性巴氏杆菌荧光定量PCR检测方法的建立. 中国预防兽医学报. 2023(02): 156-160 . 百度学术
    3. 申秋平,徐佳豪,王新茹,庄林林. 多杀性巴氏杆菌快速检测方法研究进展. 现代畜牧科技. 2023(08): 23-28 . 百度学术
    4. 王锦祥,付环茹,孙世坤,陈冬金,高承芳,桑雷,谢喜平. 兔源A型多杀性巴氏杆菌双重PCR检测方法的建立. 福建畜牧兽医. 2023(05): 20-23 . 百度学术
    5. 王锦祥,孙世坤,陈岩峰,陈冬金,桑雷,谢喜平. 兔源F型多杀性巴氏杆菌环介导等温扩增快速检测方法的建立. 中国兽医学报. 2022(03): 490-495 . 百度学术

    其他类型引用(0)

图(13)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-08-09
  • 修回日期:  2024-02-21
  • 录用日期:  2024-03-26
  • 网络出版日期:  2024-05-07
  • 刊出日期:  2024-03-27

目录

/

返回文章
返回