Identification and Expressions of TIFY Family Based on the Full-Length Transcriptome in Isodon rubescens
-
摘要:
目的 TIFY 蛋白是茉莉酸(JA)信号通路的关键调节因子,在植物生长发育、非生物胁迫以及次生代谢产物的积累中具有显著的调控作用,揭示冬凌草(Isodon rubescens)的TIFY基因可为冬凌草的抗逆性改良育种和次生代谢产物合成研究提供理论依据。 方法 基于冬凌草三代全长转录组序列,通过生物信息学方法对冬凌草TIFY基因家族进行鉴定和分析,并采用RT-qPCR 技术分析其在不同组织中的表达特性。 结果 (1)成功从冬凌草中鉴定出12个TIFY家族基因成员;(2)理化性质分析表明,其氨基酸长度124~378 aa,分子量13 924.89~39 692.38 Da,等电点5.05~9.69;除IrTIFY10蛋白为稳定蛋白,其他均为不稳定蛋白;IrTIFYs蛋白的亚细胞定位均在细胞核,均为亲水性蛋白,且不含信号肽。(3)结构分析表明,IrTIFY家族蛋白成员无跨膜结构,二级结构中含量最多的结构类型为无规则卷曲;且含有多个磷酸化位点。(4)密码子偏好性分析结果表明,IrTIFY基因家族密码子偏好性较弱,稍倾向于使用以A或U结尾的密码子。(5)启动子元件分析表明冬凌草TIFY家族成员中存在多个光响应元件、激素响应元件和逆境响应元件等,但不同成员之间的元件存在差异。(6)进化树分析表明,冬凌草TIFY家族12个成员分为PPD(IrTIFY2)、ZML(IrTIFY3/8/10)、TIFY(IrTIFY7/12)和JAZ(IrTIFY1/4/5/6/9/11)4个亚家族,进化上与同为唇形科的丹参(Salvia miltiorrhiza)亲缘关系最近。(7)RT-qPCR分析结果显示冬凌草TIFY家族12个成员在不同组织中的表达量均表现为叶>茎>根,且大部分成员存在显著差异。 结论 TIFY基因家族在冬凌草的生长发育过程中可能发挥重要的调控作用,并且可能参与调控冬凌草次生代谢产物的合成,为进一步深入研究冬凌草TIFY基因家族的功能奠定基础和提供了思路。 Abstract:Objective TIFY protein is a key regulator of the JA signalling pathway and plays a significant regulatory role in plant growth and development, abiotic stress and the accumulation of secondary metabolites. The identification of the TIFY gene in Isodon rubescens provides a theoretical foundation for the breeding of I. rubescens with enhanced stress tolerance and the investigation of the synthesis of secondary metabolites. Method TIFY family was identified using bioinformatic methods based on the full-length transcriptome database of I. rubescens. Expressions of the genes in tissues were analyzed by RT-qPCR. Result (1) A total of 12 IrTIFYs genes were identified in I. rubescens. (2) The amino acid length was 124—378, the molecular weight 13 924.89—39 692.38 Da, and the isoelectric point ranged from 5.05 to 9.69. All members were unstable proteins, except for IrTIFY10. IrTIFY proteins were all located in the nucleus and were hydrophilic proteins without signal peptides. (3) Structural analysis indicates that IrTIFY proteins lack transmembrane structure and that the most abundant secondary structure type is random coil. Furthermore, all TIFY proteins contain multiple phosphorylation sites. (4) The IrTIFY gene family had weak codon preference, with a slight tendency to use codons ending in A or U. (5) There were many light-, hormone-, and stress-responsive cis-elements in the IrTIFY gene family, but cis-elements were difference in numbers and types among different members.(6)Evolutionary tree analysis showed that the 12 members of the TIFY family were divided into four subfamilies: PPD (IrTIFY2), ZML (IrTIFY3/8/10), TIFY (IrTIFY7/12), and JAZ (IrTIFY1/4/5/6/9/11). They were closest to that of Salvia miltiorrhiza of Labiaceae family. (7) RT-qPCR analysis revealed that the expression of all 12 members of the TIFY family of I. rubescens in different tissues was as follows: leaves > stems > roots, and most of them were significantly different. Conclusion Based on the above results, it is hypothesised that the TIFY gene family plays an important regulatory role in the growth and development of I. rubescens and may be involved in the regulation of the synthesis of secondary metabolites of I. rubescens, which lays the foundation for further in-depth study of the function of the TIFY gene family in I. rubescens and provides an idea for the further study of the function of the TIFY gene family in I. rubescens. -
Key words:
- Isodon rubescens /
- TIFY gene family /
- bioinformatics analysis /
- expression analysis
-
图 6 冬凌草、拟南芥、丹参和水稻TIFY家族成员的系统树分析
Ir:冬凌草;At:拟南芥;Sm:丹参;Os:水稻;Ptr:杨树。
Figure 6. Phylogenetic trees of TIFY family members in I. rubescens, A. thaliana, S. miltiorrhiza, O. sativa, and P. trichocarpa
Ir:I. rubescens;At:Arabidopsis thaliana;Sm:Salvia miltiorrhiza;Os:Oryza sativa; Ptr: Populus trichocarpa.
表 1 荧光定量 PCR 引物序列
Table 1. Primer sequences for RT-qPCR
基因名称
Gene name正向引物序列(5′-3′)
Forward primer sequence
(5′-3′)反向引物序列(5′-3′)
Reverse primer sequence
(5′-3′)UBQ CTGAGGCTTCGTGGAGGGAT TGTAGTCTGCAAGAGTCCTT IrTIFY1 TGTCACCCCTTTCGTTCACC AGTCATCGGAGGGCCATTTC IrTIFY2 TTGATAAGCCGCTCCACCAG TTTCCGCCTCACCAGTTGTT IrTIFY3 CGAGAACTGGGATTCAGGCA TGTTCGCCCACATTAACCCA IrTIFY4 ACGGAAAGCATCTCTGGCTC ACCTGCATTCTTGCTCTGGT IrTIFY5 ACGCTTGGCTTCACTCCTAC CCTCGGGCTTAATCTGGGTC IrTIFY6 GCCGCTCCAAATTCAGAGGA TCCGGAGGGTTCAACTACCA IrTIFY7 GCGATCATATCGTTGGCGAG GCGATCTCTTCATCGACAGC IrTIFY8 GGGGAACAGATGGCAATGGA CGGCGCATCATTGGAGTAGA IrTIFY9 AGGAGGCAACCAGGGAAATC CATTGAGGGCTGGGGTTGAG IrTIFY10 TATGATGCGACGTGGACCAG TAATGGCGTTTGCAGGAGGT IrTIFY11 ATTACGTCGAGGGCCATTCC ACTCGTGCTCGGGTTCATTT IrTIFY12 TGGGTAGTTTGAGCAGGCAG CCGGCTCCAACTCCAATCAA 表 2 冬凌草TIFY家族蛋白理化性质分析
Table 2. Physicochemical properties of TIFY family proteins in I. rubescens
基因名称
Gene name转录组基因ID
Gene ID in transcriptome长度
Length/aa分子量
Molecular weight/Da等电点
Isoelectric point不稳定指数
Instability index脂肪族指数
Aliphatic index亲水性平均值
Grand average of hydropathicityIrTIFY1 D-tissues_transcript_12000 356 37,515.67 9.01 58.96 76.97 −0.169 IrTIFY2 D-tissues_transcript_12412 344 37,381.18 8.09 50.35 69.22 −0.633 IrTIFY3 D-tissues_transcript_13824 343 37,606.01 5.05 49.03 66.56 −0.567 IrTIFY4 D-tissues_transcript_14652 299 31,555.55 8.59 56.46 58.83 −0.438 IrTIFY5 D-tissues_transcript_15941 229 24,182.28 7.81 53.98 72.71 −0.315 IrTIFY6 D-tissues_transcript_16425 173 18,692.28 8.99 41.53 75.78 −0.409 IrTIFY7 D-tissues_transcript_17017 124 13,924.89 9.69 66.65 77.26 −0.473 IrTIFY8 D-tissues_transcript_27842 299 32,514.88 6.17 40.31 58.66 −0.819 IrTIFY9 D-tissues_transcript_48324 250 27,235.7 8..93 68.06 66.4 −0.634 IrTIFY10 D-tissues_transcript_51903 300 32,486.03 5.63 37.71 59.2 −0.761 IrTIFY11 D-tissues_transcript_53470 273 29,436.81 9.15 56.22 65.79 −0.778 IrTIFY12 D-tissues_transcript_57396 378 39,692.38 9.22 46.47 46.8 −0.815 表 3 冬凌草TIFY家族蛋白二级结构分析
Table 3. Secondary structure of TIFY family proteins in I. rubescens
基因名称
Gene name转录组基因ID
Gene ID in transcriptomeα-螺旋
α-helix/%延伸链
Extension/%β-转角
β-angle/%无规则卷曲
Random curling/%IrTIFY1 D-tissues_transcript_12000 11.24 12.36 2.53 73.88 IrTIFY2 D-tissues_transcript_12412 19.77 7.56 3.2 69.48 IrTIFY3 D-tissues_transcript_13824 22.45 10.79 5.83 60.93 IrTIFY4 D-tissues_transcript_14652 12.04 11.37 2.68 73.91 IrTIFY5 D-tissues_transcript_15941 17.9 12.66 4.37 65.07 IrTIFY6 D-tissues_transcript_16425 23.12 13.29 5.78 57.8 IrTIFY7 D-tissues_transcript_17017 27.56 11.81 5.51 55.12 IrTIFY8 D-tissues_transcript_27842 19.06 11.71 4.68 64.55 IrTIFY9 D-tissues_transcript_48324 20 7.6 4 68.4 IrTIFY10 D-tissues_transcript_51903 18 13.33 4.67 64 IrTIFY11 D-tissues_transcript_53470 13.92 6.59 2.93 76.56 IrTIFY12 D-tissues_transcript_57396 7.41 12.43 2.65 77.51 表 4 冬凌草TIFY家族蛋白磷酸化位点、信号肽、跨膜结构和亚细胞定位分析
Table 4. Phosphorylation site, signal peptide, transmembrane structure, and subcellular localization of TIFY family proteins in I. rubescens
基因名称
Gene name磷酸化位点
Phosphorylation
sites丝氨酸位点
Serine site/个苏氨酸位点
Threonine site/个酪氨酸位点
Tyrosine site/个信号肽值
Signal peptides
value有无信号肽
Signal peptides跨膜位置
Trans membrane
localization跨膜结构
Trans- membrane
domain亚细胞定位
Subcellular
localizationIrTIFY1 54 32 20 2 0.001 无 No 膜外 Outside 0 细胞核 Nuclear IrTIFY2 44 25 16 3 0.0007 无 No 膜外 Outside 0 细胞核 Nuclear IrTIFY3 38 20 17 1 0.0007 无 No 膜外 Outside 0 细胞核 Nuclear IrTIFY4 36 29 6 1 0.0005 无 No 膜外 Outside 0 细胞核 Nuclear IrTIFY5 20 18 2 0 0.0013 无 No 膜外 Outside 0 细胞核 Nuclear IrTIFY6 18 14 4 0 0.0018 无 No 膜外 Outside 0 细胞核 Nuclear IrTIFY7 18 13 4 1 0.0014 无 No 膜外 Outside 0 细胞核 Nuclear IrTIFY8 27 18 9 0 0.0011 无 No 膜外 Outside 0 细胞核 Nuclear IrTIFY9 32 25 5 2 0.0012 无 No 膜外 Outside 0 细胞核 Nuclear IrTIFY10 33 20 10 2 0.0022 无 No 膜外 Outside 0 细胞核 Nuclear IrTIFY11 38 32 6 0 0.0035 无 No 膜外 Outside 0 细胞核 Nuclear IrTIFY12 59 41 16 2 0.0011 无 No 膜外 Outside 0 细胞核 Nuclear 表 5 冬凌草TIFY家族蛋白密码子偏好性分析
Table 5. Codon bias of TIFY family proteins in I. rubescens
基因名称
Gene name转录组基因号
Gene ID in transcriptome有效密码子数
ENC/个GC/% GC1s/% GC2s/% GC3s/% IrTIFY1 D-tissues_transcript_12000 50.869 44.06 47.06 44.85 40.26 IrTIFY2 D-tissues_transcript_12412 55.717 46.92 45.85 50.19 44.72 IrTIFY3 D-tissues_transcript_13824 59.099 45.66 46.24 42.37 48.39 IrTIFY4 D-tissues_transcript_14652 54.066 43.83 43.44 39.62 48.45 IrTIFY5 D-tissues_transcript_15941 55.686 48.84 47.13 52.27 47.13 IrTIFY6 D-tissues_transcript_16425 52.629 46.55 44.21 44.21 51.23 IrTIFY7 D-tissues_transcript_17017 54.526 43.25 39.22 37.93 52.59 IrTIFY8 D-tissues_transcript_27842 58.699 44.06 42.25 48.49 41.45 IrTIFY9 D-tissues_transcript_48324 50.617 40.31 37.7 42.67 40.58 IrTIFY10 D-tissues_transcript_51903 53.436 49.66 50.77 50.26 47.96 IrTIFY11 D-tissues_transcript_53470 56.905 43.92 42.18 41.19 48.39 IrTIFY12 D-tissues_transcript_57396 60.714 46.35 49.59 38.39 51.07 -
[1] 国家药典委员会. 中华人民共和国药典-二部: 2020年版[M]. 北京: 中国医药科技出版社, 2020. [2] 谢涛, 杨正强, 徐文武, 等. 冬凌草化学成分、药理作用及临床应用研究进展 [J]. 中草药, 2022, 53(1):317−325.XIE T, YANG Z Q, XU W W, et al. Research progress on chemical constituents, pharmacological effects and clinical application of Rabdosia rubescens [J]. Chinese Traditional and Herbal Drugs, 2022, 53(1): 317−325. (in Chinese) [3] 靳保龙. 冬凌草二萜合酶基因的克隆及其功能研究[D]. 武汉: 湖北中医药大学, 2019.JIN B L. Cloning and functional study of the diterpene synthase genes from Isodon rubescens[D]. Wuhan: Hubei University of Chinese Medicine, 2019. (in Chinese) [4] 张济萌. 茉莉酸甲酯对冬凌草次生代谢的调控机理研究[D]. 郑州: 郑州大学, 2021.ZHANG J M. Regulation mechanism of methyl jasmonate on secondary metabolism of Isodon rubescens[D]. Zhengzhou: Zhengzhou University, 2021. (in Chinese) [5] 李永华, 肖能文, 刘勇波. 植物防御中茉莉酸信号通路抑制与终止的作用机制 [J]. 植物保护学报, 2021, 48(3):563−569.LI Y H, XIAO N W, LIU Y B. Mechanisms of repression and termination of jasmonate signaling in plant defense [J]. Journal of Plant Protection, 2021, 48(3): 563−569. (in Chinese) [6] BAI Y H, MENG Y J, HUANG D L, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family [J]. Genomics, 2011, 98(2): 128−136. doi: 10.1016/j.ygeno.2011.05.002 [7] 杨锐佳, 张中保, 吴忠义. 植物转录因子TIFY家族蛋白结构和功能的研究进展 [J]. 生物技术通报, 2020, 36(12):121−128.YANG R J, ZHANG Z B, WU Z Y. Progress of the structural and functional analysis of plant transcription factor TIFY protein family [J]. Biotechnology Bulletin, 2020, 36(12): 121−128. (in Chinese) [8] WU H, YE H Y, YAO R F, et al. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice [J]. Plant Science, 2015, 232: 1−12. doi: 10.1016/j.plantsci.2014.12.010 [9] ZHANG F, YAO J, KE J Y, et al. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling [J]. Nature, 2015, 525(7568): 269−273. doi: 10.1038/nature14661 [10] 于欣欣, 米要磊, 孟祥霄, 等. 人参TIFY基因家族鉴定与分析 [J]. 中华中医药学刊, 2022, 40(3):72−76,261-263.YU X X, MI Y L, MENG X X, et al. Identification and analysis of TIFY gene family of Renshen (Panax ginseng C. A. Meyer) [J]. Chinese Archives of Traditional Chinese Medicine, 2022, 40(3): 72−76,261-263. (in Chinese) [11] 巩永永, 端木慧子. 甜菜TIFY基因家族的全基因组鉴定与生物信息学分析 [J]. 中国农学通报, 2022, 38(8):17−24.GONG Y Y, DUANMU H Z. TIFY gene family in sugar beet: Whole genome identification and bioinformatics analysis [J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 17−24. (in Chinese) [12] 姚新转, 张宝会, 陈湖芳, 等. 茶树TIFY基因家族鉴定及非生物胁迫下表达分析 [J]. 广西植物, 2022, 42(12):2044−2055.YAO X Z, ZHANG B H, CHEN H F, et al. Genome identification of Camellia sinensis TIFY gene family and its expression analysis of abiotic stress [J]. Guihaia, 2022, 42(12): 2044−2055. (in Chinese) [13] 刘俊, 陈玉龙, 刘燕, 等. 杜仲TIFY转录因子鉴定与表达分析 [J]. 中国实验方剂学杂志, 2021, 27(19):165−174.LIU J, CHEN Y L, LIU Y, et al. Identification and expression analysis of TIFY transcription factor in Eucommia ulmoides [J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(19): 165−174. (in Chinese) [14] 胡睿, 郭建秀, 郭小强, 等. 铁皮石斛DoTIFY基因家族全基因组鉴定及在原球茎发育过程中的表达[J]. 生物学杂志, 2021, 38(5):53−58.HU R, GUO J X, GUO X Q, et al. Genome-wide identification and analysis of the TIFY gene family in Dendrobium officinale Kimura et Migo during protocorm development [J]. Journal of Biology, 2021, 38(5): 53−58. (in Chinese) [15] 秦振芬, 孟祥霄, 温东, 等. 乌拉尔甘草TIFY基因家族鉴定及调控分析 [J]. 世界科学技术-中医药现代化, 2022, 24(5):1855−1864.QIN Z F, MENG X X, WEN D, et al. Genome-wide identification and regulatory analysis of the TIFY gene family in Glycyrrhiza uralensis [J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2022, 24(5): 1855−1864. (in Chinese) [16] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009 [17] LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J]. Nucleic Acids Research, 2002, 30(1): 325−327. doi: 10.1093/nar/30.1.325 [18] TAMURA K, STECHER G, PETERSON D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology and Evolution, 2013, 30(12): 2725−2729. doi: 10.1093/molbev/mst197 [19] ZHANG H K, GAO S H, LERCHER M J, et al. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees [J]. Nucleic Acids Research, 2012, 40(W1): W569−W572. doi: 10.1093/nar/gks576 [20] 王晨玮. 磷酸化蛋白质组数据整合及分析[D]. 武汉: 华中科技大学, 2020.WANG C W. Data integration and analysis of phosphoproteome[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese) [21] 周慧琦. 基因组GC含量与碱基、密码子和氨基酸使用偏好的关系[D]. 成都: 电子科技大学.ZHOU H Q. Analysis of the relationship between genomic GC content and patterns of base usage, Codon usage and amino acid usage in prokaryotes[D]. Chengdu: University of Electronic Science and Technology of China. (in Chinese) [22] 郭玉平, 单天雷, 袁延超, 等. 不同作物FAD2基因密码子偏好性分析 [J]. 山东农业科学, 2013, 45(7):24−28,32.GUO Y P, SHAN T L, YUAN Y C, et al. Analysis of Codon usage bias of FAD2 gene in different crops [J]. Shandong Agricultural Sciences, 2013, 45(7): 24−28,32. (in Chinese) [23] 张维洵, 潘小勇, 沈红斌. 基于深度学习与领域规则建模的蛋白质信号肽及其切割位点预测 [J]. 南京理工大学学报, 2020, 44(3):278−287.ZHANG W X, PAN X Y, SHEN H B. Predicting protein signal peptides and their cleavage sites based on deep learning and domain rule modeling [J]. Journal of Nanjing University of Science and Technology, 2020, 44(3): 278−287. (in Chinese) [24] WANG W J, LIU G S, NIU H X, et al. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco (Nicotiana tabacum L. cv. TN90) [J]. Journal of Experimental Botany, 2014, 65(8): 2147−2160. doi: 10.1093/jxb/eru084 [25] DAI Z N, DONG S Y, MIAO H, et al. Genome-wide identification of TIFY genes and their response to various pathogen infections in cucumber (Cucumis sativus L.) [J]. Scientia Horticulturae, 2022, 295: 110814. doi: 10.1016/j.scienta.2021.110814 [26] MA Y J, SHU S S, BAI S L, et al. Genome-wide survey and analysis of the TIFY gene family and its potential role in anthocyanin synthesis in Chinese sand pear (Pyrus pyrifolia) [J]. Tree Genetics & Genomes, 2018, 14(2): 25. [27] HAKATA M, KURODA M, OHSUMI A, et al. Overexpression of a rice TIFY gene increases grain size through enhanced accumulation of carbohydrates in the stem [J]. Bioscience, Biotechnology, and Biochemistry, 2012, 76(11): 2129−2134. doi: 10.1271/bbb.120545 [28] WHITE D W R. PEAPOD regulates lamina size and curvature in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 13238−13243. [29] LIAN C L, LAN J X, ZHANG B, et al. Molecular cloning and functional analysis of IrUGT86A1-like gene in medicinal plant Isodon rubescens (Hemsl. ) Hara [J]. Life, 2022, 12(9): 1334. doi: 10.3390/life12091334