Accumulation and Molecular Detection of Pb and Cd in Sweet Corn Inbred Lines
-
摘要:
目的 筛选获得在重金属Pb、Cd单一污染及复合污染下Pb、Cd低积累的优良甜玉米自交系,以及可用于甜玉米重金属Pb、Cd积累早代鉴定的分子技术。 方法 以10个甜玉米自交系为供试材料,通过盆栽试验研究重金属Pb、Cd单一污染及Pb、Cd复合污染下,玉米根系、茎叶和籽粒中Pb、Cd含量的积累差异;同时对供试材料ZmHMA2 InDel位点进行Pb、Cd积累差异分子检测,综合分子标记检测与重金属Pb、Cd在不同材料间的积累结果,筛选甜玉米重金属低积累自交系。 结果 无论是单一污染还是复合污染,重金属Pb、Cd的积累规律均表现为根系>茎叶>籽粒;在复合污染下,玉米不同组织对重金属Pb、Cd的积累无明显竞争与协同效应,表明玉米Pb、Cd的积累机制存在一定差异。通过鉴定,获得籽粒Pb低积累玉米自交系2份,籽粒Cd低积累玉米自交系3份,仅有一份材料闽甜系X901表现出籽粒Pb、Cd均低积累。利用InDel 位点(InDel2307)对供试材料进行分子检测,结果发现供试材料中有4份存在该位点,含有该位点的材料中根系、茎叶和籽粒Cd含量平均值较其他材料平均值分别低1.801、0.64 、0.131 mg·kg−1。 结论 InDel2307位点能将不同玉米自交系按Cd累积量进行区分,对甜玉米Cd含量的区分具有特异性标记。综合分子标记检测与Pb、Cd含量积累结果,筛选出自交系闽甜系X901 为Pb、Cd低积累材料。 Abstract:Objective Sweet corn inbred lines low in accumulating Pb and Cd were identified, and a molecular detection method for the pollutants examined. Method Ten sweet corn inbred lines were tested on Pb and Cd accumulation. In a pot experiment, the heavy metals in roots, stems/leaves, and kernels of the plants grown on soil with spiked Pb and/or Cd were measured over time. Applicability of a molecular detection method on Pb and Cd at the InDel locus of ZmHMA2 in corn plant was scrutinized. Result The accumulation of Pb and Cd in organs of a corn plant was roots>stems/leaves>kernels. It did not differ significantly whether the metal elements were presented individually or simultaneously in the soil. Two inbred lines were identified to retain in the kernels less on Pb, 3 on Cd, and only Mintian X901 on both Pb and Cd. The targeted molecular detection found InDel 2307 locus in 4 of the specimens, the average content of Cd which contained were 1.801 mg·kg−1 lower in the roots, 0.64 mg·kg−1 lower in the stems/leaves, and 0.131 mg·kg−1 lower in the kernels compared to the average of the other varieties. Conclusion The InDel 2307 locus as a marker displayed a specificity in differentiating Cd content in corn plants grown on soils contaminated with different levels of the heavy metals. The molecular detection result and the Pb and Cd contents on the 10 sweet corn inbred lines indicated that Mintian X901 was the cultivar least prone to accumulate the pollutants. -
Key words:
- Heavy metal /
- Pb pollution /
- Cd pollution /
- sweet corn /
- accumulation /
- marker detection
-
表 1 供试甜玉米材料编号及名称
Table 1. Codes and names of sweet corn inbred lines
编号
No.自交系
Inbred line编号
No.自交系
Inbred lineS1 闽甜系688 S6 闽甜系AS74 S2 闽甜系G23 S7 闽甜系AS76 S3 闽甜系H6 S8 闽甜系T146 S4 闽甜系197 S9 闽甜系X901 S5 闽甜系AS67 S10 闽甜系JR8609 表 2 ZmHMA2基因所用引物
Table 2. Primers used in amplifying ZmHMA2
引物名称
Primer name正向引物 (5′-3′)
Primer sequence(5′-3′)反向引物(5′-3′)
Primer sequence(5′-3′)ZmHMA2-1 TTATCGCTCCGGATATGCCC CCATCCATCCCTTCAGCCTTT ZmHMA2-2 GGATATGCCCTCTCCAGGGT CCATCCATCCCTTCAGCCTT ZmHMA2-3 TTTATCGCTCCGGATATGCCC CATCCATCCCTTCAGCCTTT 表 3 单一Pb污染环境下玉米不同基因型及不同部位重金属Pb含量
Table 3. Pb contents in tissues of sweet corn inbred lines grown under Pb-contaminated soil
自交系
Inbred linePb含量 Pb content/(mg·kg−1) 分子检测
Marker detection根 Roots 茎叶 Shoots 籽粒 Grains 闽甜系688(S1) 240.171±1.023 bcA 89.531±1.101 cB 0.312±0.019 bC − 闽甜系G23(S2) 214.412±1.201 dA 87.408±1.062 cB 0.244±0.018 cC − 闽甜系H6(S3) 176.303±2.390 efA 86.721±1.112 cB 0.135±0.018 eC − 闽甜系197(S4) 233.591±2.331 cA 87.295±0.945 cB 0.223±0.009 cC + 闽甜系AS67(S5) 259.374±3.031 aA 125.216±2.213 aB 0.381±0.010 aC + 闽甜系AS74(S6) 249.845±1.944 bA 120.911±1.409 abB 0.321±0.011 a C + 闽甜系AS76(S7) 248.210±2.802 bA 90.923±1.204 cB 0.227±0.017 cC − 闽甜系T146(S8) 260.183±1.255 aA 114.475±1.301 bB 0.397±0.018 aC − 闽甜系X901(S9) 169.003±3.501 fA 89.782±0.928 cB 0.172±0.010 dC + 闽甜系JR8609(S10) 185.784±2.902 eA 91.761±2.691 cB 0.344±0.010 bC − 同行数据后不同大写字母表示不同组织部位间差异极显著(P<0.01),同列数据后不同小写字母表示不同自交系间差异显著(P<0.05)。下表同。
Data with different capital letters on same row indicate extremely significant differences among different tissues at P<0.01; those with different lowercase letters on the same column indicate significant differences among different inbred line at P<0.05. Same for below.表 4 单一Cd污染环境下玉米不同基因型及不同部位重金属Cd含量
Table 4. Cd contents in tissues of sweet corn inbred lines grown under Cd-contaminated soil
编号
No.Cd含量 Cd content/(mg·kg−1) 根系 Roots 茎叶 Shoots 籽粒 Grains 闽甜系688(S1) 3.528±0.102 aA 1.723±0.116 abB 0.213±0.121 bC 闽甜系G23(S2) 3.823±0.123 aA 1.285±0.126 bcB 0.181±0.120 cC 闽甜系H6(S3) 3.124±0.022 bA 1.992±0.092 aB 0.241±0.018 aC 闽甜系197(S4) 1.055±0.134 eA 1.137±0.201 cB 0.106±0.015 dC 闽甜系AS67(S5) 1.231±0.094 eA 0.988±0.132 dB 0.086±0.021 eC 闽甜系AS74(S6) 1.166±0.236 eA 0.932±0.144 dB 0.091±0.012 deC 闽甜系AS76(S7) 2.931±0.136 cA 2.022±0.118 aB 0.234±0.011 aC 闽甜系T146(S8) 2.215±0.254 cdA 1.535±0.087 bB 0.209±0.011 bC 闽甜系X901(S9) 1.043±0.108 eA 0.772±0.102 eB 0.063±0.001 fC 闽甜系JR8609(S10) 1.929±0.203 dA 1.025±0.121 dB 0.225±0.012 abC 表 5 Pb-Cd复合污染下玉米不同基因型及不同部位重金属Pb、Cd含量
Table 5. Pb and Cd contents in tissues of sweet corn inbred lines grown under Pb-and-Cd-contaminated soil
编号
No.根系重金属含量
Heavy metal content in roots/(mg·kg−1)茎叶重金属含量
Heavy metal content in shoots/(mg·kg−1)籽粒重金属含量
Heavy metal content in grains/(mg·kg−1)Pb Cd Pb Cd Pb Cd 闽甜系688(S1) 225.182±2.211 c 2.981±0.130 a 95.427±2.122 b 1.231±0.122 c 0.432±0.022 ab 0.360±0.020 a 闽甜系G23(S2) 218.523±4.652 d 2.594±0.221 b 94.143±1.842 b 0.924±0.114 c 0.392±0.021 b 0.141±0.021 c 闽甜系H6(S3) 167.623±3.692 f 3.049±0.182 a 86.613±1.553 c 1.771±0.191 a 0.083±0.038 e 0.350±0.025 a 闽甜系197(S4) 219.825±2.622 d 1.911±0.372 c 95.310±1.190 b 0.908±0.127 d 0.309±0.011 c 0.091±0.024 d 闽甜系AS67(S5) 234.535±4.741 b 1.263±0.218 d 115.542±1.424 a 0.815±0.102 d 0.429±0.017 ab 0.087±0.019 d 闽甜系AS74(S6) 228.191±3.505 c 2.406±0.132 b 119.261±1.211 a 1.197±0.119 c 0.471±0.022 a 0.102±0.019 c 闽甜系AS76(S7) 228.435±2.142 c 3.044±0.159 a 79.243±2.107 d 1.551±0.149 b 0.383±0.033 b 0.178±0.022 b 闽甜系T146(S8) 246.653±2.712 a 1.951±0.154 c 111.020±1.508 a 1.168±0.214 c 0.463±0.018 a 0.155±0.024 bc 闽甜系X901(S9) 159.371±3.443 f 1.221±0.213 d 93.035±1.416 b 0.536±0.275 e 0.094±0.018 e 0.074±0.020 d 闽甜系JR8609(S10) 196.029±1.961 e 1.408±0.126 d 85.861±1.312 c 0.860±0.112 d 0.245±0.032 d 0.151±0.021 c -
[1] 邵云, 郝真真, 王文斐, 等. 土壤重金属污染现状及修复技术研究进展 [J]. 北方园艺, 2016, (17):193−196. doi: 10.11937/bfyy.201617047SHAO Y, HAO Z Z, WANG W F, et al. Research progress on heavy metal contaminated soils and research advances in remediation technology [J]. Northern Horticulture, 2016(17): 193−196. (in Chinese) doi: 10.11937/bfyy.201617047 [2] 赵鑫娜, 杨忠芳, 余涛. 矿区土壤重金属污染及修复技术研究进展 [J]. 中国地质, 2023, 50(1):84−101. doi: 10.12029/gc20220702001ZHAO X N, YANG Z F, YU T. Review on heavy metal pollution and remediation technology in the soil of mining areas [J]. Geology in China, 2023, 50(1): 84−101. (in Chinese) doi: 10.12029/gc20220702001 [3] 张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究 [J]. 环境科学, 2014, 35(2):692−703.ZHANG X M, ZHANG X Y, ZHONG T Y, et al. Spatial distribution and accumulation of heavy metal in arable land soil of China [J]. Environmental Science, 2014, 35(2): 692−703. (in Chinese) [4] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价 [J]. 环境科学, 2020, 41(6):2822−2833.CHEN W X, LI Q, WANG Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China [J]. Environmental Science, 2020, 41(6): 2822−2833. (in Chinese) [5] 唐书源, 赵治书, 易庭辉, 等. 重庆郊县市场玉米的重金属污染及对策 [J]. 农业环境与发展, 2003, 20(2):30.TANG S Y, ZHAO Z S, YI T H, et al. Heavy metal pollution of corn in suburban market of Chongqing and its countermeasures [J]. Agro-Environment and Development, 2003, 20(2): 30. (in Chinese) [6] 杨刚, 沈飞, 钟贵江, 等. 西南山地铅锌矿区耕地土壤和谷类产品重金属含量及健康风险评价 [J]. 环境科学学报, 2011, 31(9):2014−2021.YANG G, SHEN F, ZHONG G J, et al. Concentration and health risk of heavy metals in crops and soils in a zinc-lead mining area in southwest mountainous regions [J]. Acta Scientiae Circumstantiae, 2011, 31(9): 2014−2021. (in Chinese) [7] 许静, 陈永快, 邹晖. 福建省不同区域土壤、蔬菜重金属污染现状分析 [J]. 福建农业学报, 2011, 26(4):646−651. doi: 10.3969/j.issn.1008-0384.2011.04.030XU J, CHEN Y K, ZOU H. Regional comparisons for heavy metal contamination in soil and vegetables in Fujian Province [J]. Fujian Journal of Agricultural Sciences, 2011, 26(4): 646−651. (in Chinese) doi: 10.3969/j.issn.1008-0384.2011.04.030 [8] 沈一尘, 涂晨, 邱炜, 等. 镉污染土壤上不同水稻品种的镉积累与减污潜力 [J]. 生态与农村环境学报, 2023, 39(4):547−555.SHEN Y C, TU C, QIU W, et al. Cadmium accumulation and pollution reduction potential of different rice varieties on cadmium-contaminated soils [J]. Journal of Ecology and Rural Environment, 2023, 39(4): 547−555. (in Chinese) [9] 邵华伟, 葛春辉, 马彦茹, 等. 施入城市生活垃圾堆肥对玉米植株重金属分布及土壤养分的影响 [J]. 农业资源与环境学报, 2013, 30(6):58−63. doi: 10.3969/j.issn.1005-4944.2013.06.012SHAO H W, GE C H, MA Y R, et al. Effect of municipal solid waste(MSW)compost application on heavy metal distribution in maize plant and soil nutrients [J]. Journal of Agricultural Resources and Environment, 2013, 30(6): 58−63. (in Chinese) doi: 10.3969/j.issn.1005-4944.2013.06.012 [10] 辛艳卫, 梁成华, 杜立宇, 等. 不同玉米品种对镉的富集和转运特性 [J]. 农业环境科学学报, 2017, 36(5):839−846. doi: 10.11654/jaes.2016-1668XIN Y W, LIANG C H, DU L Y, et al. Accumulation and translocation of cadmium in different maize cultivars [J]. Journal of Agro-Environment Science, 2017, 36(5): 839−846. (in Chinese) doi: 10.11654/jaes.2016-1668 [11] 李月芳, 刘领, 陈欣, 等. 模拟铅胁迫下玉米不同基因型生长与铅积累及各器官间分配规律 [J]. 农业环境科学学报, 2010, 29(12):2260−2267.LI Y F, LIU L, CHEN X, et al. Plant growth, lead uptake and partitioning of maize(Zea mays L. ) under simulated mild/moderate lead pollution stress [J]. Journal of Agro-Environment Science, 2010, 29(12): 2260−2267. (in Chinese) [12] WANG A Y, WANG M Y, LIAO Q, et al. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: Implication of maize cultivar selection for minimal risk to human health and for phytoremediation [J]. Environmental Science and Pollution Research, 2016, 23(6): 5410−5419. doi: 10.1007/s11356-015-5781-z [13] 袁林, 刘颖, 兰玉书, 等. 不同玉米品种对镉吸收累积特性研究 [J]. 四川农业大学学报, 2018, 36(1):22−27.YUAN L, LIU Y, LAN Y S, et al. Variations of cadmium absorption and accumulation among corn cultivars of metal pollution in soil from lead-zinc mining area [J]. Journal of Sichuan Agricultural University, 2018, 36(1): 22−27. (in Chinese) [14] 鄢小龙, 马宏朕, 李元, 等. 铅锌矿区周边农田Cd、Pb低累积玉米品种筛选 [J]. 云南农业大学学报(自然科学), 2019, 34(6):1076−1083.YAN X L, MA H Z, LI Y, et al. Screening Zea mays cultivars based upon accumulation of Cd and Pb in the farmland around the lead-zinc mine area [J]. Journal of Yunnan Agricultural University (Natural Science), 2019, 34(6): 1076−1083. (in Chinese) [15] 赵雄伟. 玉米控制重金属镉积累的遗传基础解析[D]. 雅安: 四川农业大学, 2018.ZHAO X W. Genetic Basis for Controlling Heavy Metal Cadmium Accumulation in Maize[D]. Yaan: Sichuan Agricultural University, 2018. (in Chinese) [16] 兰雨舟. 甜糯玉米籽粒镉含量全基因组关联分析[D]. 雅安: 四川农业大学, 2018.LAN Y Z. Genome wide association study for Cd content in grains of sweet and waxy maize[D]. Yaan: Sichuan Agricultural University, 2018. (in Chinese) [17] 田婉莹, 孙进华, 李焕苓, 等. 利用分子标记技术鉴定荔枝杂交后代的研究 [J]. 分子植物育种, 2015, 13(5):1045−1052.TIAN W Y, SUN J H, LI H L, et al. Identification of Litchi(Litchi chinensis sonn. ) hybrids by molecular markers [J]. Molecular Plant Breeding, 2015, 13(5): 1045−1052. (in Chinese) [18] KÖSOĞLU K, YUMUK S, AYDIN Y, et al. Use of SNP markers by KASP assay for MAS studies in sunflower against Plasmopara halstedii [J]. Turkish Journal of Agriculture and Forestry, 2017, 41: 480−489. doi: 10.3906/tar-1707-53 [19] YE J, WANG X, HU T X, et al. An InDel in the promoter of Al-activated malate transporter 9 selected during tomato domestication determines fruit malate contents and aluminum tolerance [J]. The Plant Cell, 2017, 29(9): 2249−2268. doi: 10.1105/tpc.17.00211 [20] 刘江晖, 周华. ICP-MS法同时测定食品中8种微量有害元素的方法研究 [J]. 中国卫生检验杂志, 2004, 14(1):3−4,2. doi: 10.3969/j.issn.1004-8685.2004.01.002LIU J H, ZHOU H. Simultaneous determination of 8 trace toxic elements in food by ICP- MS [J]. Chinese Journal of Health Laboratory Technology, 2004, 14(1): 3−4,2. (in Chinese) doi: 10.3969/j.issn.1004-8685.2004.01.002 [21] 刘可心, 王璐, 蔚荣海, 等. 一种适于SNP芯片分型的玉米种皮组织DNA提取方法 [J]. 分子植物育种, 2017, 15(1):195−199.LIU K X, WANG L, YU R H, et al. A DNA extraction method from maize seed capsule tissue suitable for SNP chip genotyping [J]. Molecular Plant Breeding, 2017, 15(1): 195−199. (in Chinese) [22] GRANT C A, CLARKE J M, DUGUID S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation [J]. The Science of the Total Environment, 2008, 390(2/3): 301−310. [23] 李正文, 张艳玲, 潘根兴, 等. 不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险 [J]. 环境科学, 2003, 24(3):112−115. doi: 10.3321/j.issn:0250-3301.2003.03.022LI Z W, ZHANG Y L, PAN G X, et al. Grain contents of Cd, Cu and Se by 57 rice cultivars and the risk significance for human dietary uptake [J]. Chinese Journal of Environmental Science, 2003, 24(3): 112−115. (in Chinese) doi: 10.3321/j.issn:0250-3301.2003.03.022 [24] WU F B, ZHANG G. Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings [J]. Bulletin of Environmental Contamination and Toxicology, 2002, 69(2): 219−227. doi: 10.1007/s00128-002-0050-5 [25] MCLAUGHLIN M J, BELL M J, WRIGHT G C, et al. Uptake and partitioning of cadmium by cultivars of peanut (Arachis hypogaea L. ) [J]. Plant and Soil, 2000, 222(1): 51−58. [26] LI Y M, CHANEY R L, SCHNEITER A A, et al. Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax [J]. Euphytica, 1997, 94(1): 23−30. doi: 10.1023/A:1002996405463 [27] 张宁, 陶荣浩, 张慧敏, 等. 不同玉米品种对镉积累和转运差异研究 [J]. 农业资源与环境学报, 2022, 39(6):1208−1216.ZHANG N, TAO R H, ZHANG H M, et al. Differences in cadmium accumulation and translocation in different varieties of Zea mays [J]. Journal of Agricultural Resources and Environment, 2022, 39(6): 1208−1216. (in Chinese) [28] 文秋红, 于丽华. 玉米自交系富集镉能力和最佳收获时期 [J]. 生态学报, 2006, 26(12):4066−4070. doi: 10.3321/j.issn:1000-0933.2006.12.020WEN Q H, YU L H. The ability of accumulate Cadmium and the best harvest time of six series maize inbred lines in Cd-contaminated soil [J]. Acta Ecologica Sinica, 2006, 26(12): 4066−4070. (in Chinese) doi: 10.3321/j.issn:1000-0933.2006.12.020 [29] ZHANG Z M, JIN F, WANG C, et al. Difference between Pb and Cd accumulation in 19 elite maize inbred lines and application prospects [J]. Journal of Biomedicine & Biotechnology, 2012, 2012: 271485. [30] LIU J, QU J T, YANG C, et al. Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data [J]. BMC Genomics, 2015, 16(1): 601. doi: 10.1186/s12864-015-1797-5 [31] 李军, 李白. 水稻氮高效利用基因NRT1.1B InDel分子标记的开发与应用 [J]. 分子植物育种, 2016, 14(12):3405−3413.LI J, LI B. Development and application of InDel marker for high nitrogen-use efficiency gene NRT1.1B in rice [J]. Molecular Plant Breeding, 2016, 14(12): 3405−3413. (in Chinese) [32] HOSSAIN M A, PIYATIDA P, DA SILVA J A T, et al. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation [J]. Journal of Botany, 2012, 2012: 872875.