• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3个优质甜玉米品种幼苗及田间耐寒性分析

詹鹏麟 张扬 林建新 卢和顶 许静 庄炜 陈山虎 廖长见

詹鹏麟,张扬,林建新,等. 3个优质甜玉米品种幼苗及田间耐寒性分析 [J]. 福建农业学报,2024,39(3):243−250 doi: 10.19303/j.issn.1008-0384.2024.03.001
引用本文: 詹鹏麟,张扬,林建新,等. 3个优质甜玉米品种幼苗及田间耐寒性分析 [J]. 福建农业学报,2024,39(3):243−250 doi: 10.19303/j.issn.1008-0384.2024.03.001
ZHAN P L, ZHANG Y, LIN J X, et al. The Cold Tolerance Analysis of Three Sweet Maize Cultivars in Seedlings and Field [J]. Fujian Journal of Agricultural Sciences,2024,39(3):243−250 doi: 10.19303/j.issn.1008-0384.2024.03.001
Citation: ZHAN P L, ZHANG Y, LIN J X, et al. The Cold Tolerance Analysis of Three Sweet Maize Cultivars in Seedlings and Field [J]. Fujian Journal of Agricultural Sciences,2024,39(3):243−250 doi: 10.19303/j.issn.1008-0384.2024.03.001

3个优质甜玉米品种幼苗及田间耐寒性分析

doi: 10.19303/j.issn.1008-0384.2024.03.001
基金项目: 福建省科技计划公益类专项(2021R1031006、2022R1031001);福建省种业创新与产业化工程项目( zycxny2021006);福建省农业科学院自由探索科技创新项目(ZYTS2023004)
详细信息
    作者简介:

    詹鹏麟(1991—),男,助理研究员,主要从事玉米遗传育种及生物技术研究,E-mail:874751264@qq.com

    通讯作者:

    廖长见(1979—),男,副研究员,主要从事玉米遗传育种及生物技术研究,E-mail:liaocj1978@163.com

  • 中图分类号: S513

The Cold Tolerance Analysis of Three Sweet Maize Cultivars in Seedlings and Field

  • 摘要:   目的  为提升甜玉米产值,生产上常需要促早和冬种栽培,但两种栽培模式会经历低温危害过程,因此鉴定耐寒性甜玉米品种在种植和推广具有重要应用价值。  方法  以闽甜6855及同生态应用品种萃甜618和广良甜27号(简称广良27)为供试材料,采用室内和大田低温表型鉴定,对幼苗耐寒性生理指标及大田果穗外观品质性状进行比较分析。  结果  (1)3个品种幼苗进行4 ℃处理24、48、72 h后,表型性状结果发现闽甜6855耐寒性最强,萃甜618次之,广良27最弱。(2)对低温处理下5个耐寒指标检测发现,在48 h下闽甜6855中超氧化物歧化酶(Superoxide dismutase,SOD)和过氧化物酶(Peroxidase,POD)酶活含量分别为315.43和429.81 U·g−1,过氧化氢酶(Catalase,CAT)活性为771.97 µmoL·min−1·g−1,分别比萃甜618高13.9%、109.1%和28.5%,比广良27高34.3%、86.4%和18.8%;丙二醛(Malondialdehyde,MDA)含量在闽甜6855积累最低;而可溶性蛋白质(Soluble protein,SP)含量在闽甜6855中显著高于广良27。(3)耐寒指标相关性分析发现,SOD酶活性与处理时间和CAT酶活性有极显著相关性,与SP酶活性具有显著性相关。(4)冬季大田种植,采后比较果穗特性,发现闽甜6855结实性最好,外观好,无缺粒现象;穗行数达15.6、出籽率71.68%,高于萃甜618和广良27,秃尖长最短。  结论  闽甜6855幼苗期在表型和生理上具有更明显的耐寒性,低温下果穗外观品质优势强,具有重要推广应用价值。
  • 图  1  低温处理不同时间下甜玉米幼苗表型比较

    A~D分别为4 ℃处理0、24、48、 72 h。

    Figure  1.  Phenotypic appearances of sweet maize seedlings grown at 4 ℃ for varied durations

    A–D: treated at 4℃ for 0, 24, 48, and 72 h, respectively.

    图  2  低温处理下甜玉米幼苗SOD酶活性比较

    A~D分别表示低温处理0、24、48、72 h。不同的小写字母表示具有显著性差异,P < 0.05。下同。

    Figure  2.  SOD activity of sweet maize seedlings at 4 ℃

    A–D were treated at 4 ℃ for 0, 24, 48, 72 h, respectively. Data with different lowercase letters indicate significant differences at P<0.05. Same for below.

    图  3  低温处理下甜玉米幼苗CAT酶活性比较

    Figure  3.  CAT activity of sweet maize seedlings at 4 ℃

    图  4  低温处理下甜玉米幼苗POD酶活性比较

    Figure  4.  POD activity of sweet maize seedlings at 4 ℃

    图  5  低温处理下甜玉米幼苗MDA含量比较

    Figure  5.  MDA content of sweet maize seedlings at 4 ℃

    图  6  低温处理下甜玉米幼苗SP含量比较

    Figure  6.  SP content of sweet maize seedlings at 4 ℃

    图  7  不同时间低温处理下生理指标相关性

    Figure  7.  Correlation between physiological indices of maize and treatment conditions

    图  8  冬季种植下产量性状比较

    Figure  8.  Yield traits of winter season sweet maize

  • [1] ALLEN D J, ORT D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants [J]. Trends in Plant Science, 2001, 6(1): 36−42. doi: 10.1016/S1360-1385(00)01808-2
    [2] 刘夫国, 牛丽影, 李大婧, 等. 鲜食玉米加工利用研究进展 [J]. 食品科学, 2012, 33(23):375−379.

    LIU F G, NIU L Y, LI D J, et al. Research progress in processing and utilization of fresh corn [J]. Food Science, 2012, 33(23): 375−379. (in Chinese)
    [3] RAY D K, GERBER J S, MACDONALD G K, et al. Climate variation explains a third of global crop yield variability [J]. Nature Communications, 2015, 6: 5989. doi: 10.1038/ncomms6989
    [4] 李春艳, 毛笈华, 于永涛, 等. 甜玉米自交系萌芽期耐寒性的鉴定及筛选 [J]. 广东农业科学, 2016, 43(8):22−26+2.

    LI C Y, MAO J H, YU Y T, et al. Identification and screening of chilling tolerance of sweet corn inbred lines in seedling emergence stage [J]. Guangdong Agricultural Sciences, 2016, 43(8): 22−26+2. (in Chinese)
    [5] ZENG R, LI Z Y, SHI Y T, et al. Natural variation in a type-a response regulator confers maize chilling tolerance [J]. Nature Communications, 2021, 12: 4713. doi: 10.1038/s41467-021-25001-y
    [6] TANG X D, AN B Y, CAO D M, et al. Improving photosynthetic capacity, alleviating photosynthetic inhibition and oxidative stress under low temperature stress with exogenous hydrogen sulfide in blueberry seedlings [J]. Frontiers in Plant Science, 2020, 11: 108. doi: 10.3389/fpls.2020.00108
    [7] MA Y, TAN R X, ZHAO J R. Chilling tolerance in maize: Insights into advances-toward physio-biochemical responses' and QTL/genes' identification [J]. Plants, 2022, 11(16): 2082. doi: 10.3390/plants11162082
    [8] GUAN Y L, HWARARI D, KORBOE H M, et al. Low temperature stress-induced perception and molecular signaling pathways in plants [J]. Environmental and Experimental Botany, 2023, 207: 105190. doi: 10.1016/j.envexpbot.2022.105190
    [9] 马延华, 王庆祥, 陈绍江. 玉米耐寒性生理生化机理与分子遗传研究进展 [J]. 玉米科学, 2013, 21(3):76−81.

    MA Y H, WANG Q X, CHEN S J. Research progress on physio-biochemistry and molecular genetics of chilling tolerance in maize [J]. Journal of Maize Sciences, 2013, 21(3): 76−81. (in Chinese)
    [10] AHMAD I. Effect of seed priming with ascorbic acid, salicylic acid and hydrogen peroxide on emergence, vigor and antioxidant activities of maize [J]. African Journal of Biotechnology, 2012, 11(5): 1127−1137.
    [11] 王瑞. 春玉米苗期抗冷性鉴定及其生理生化基础研究[D]. 哈尔滨: 东北农业大学, 2007

    WANG R. Studies on cold resistance identification and its physiological and biochemical basis in spring maize seedling[D]. Harbin: Northeast Agricultural University, 2007. (in Chinese)
    [12] 王腾飞, 裴玉贺, 郭新梅, 等. 3个玉米品种苗期耐寒性鉴定 [J]. 核农学报, 2017, 31(4):803−808.

    WANG T F, PEI Y H, GUO X M, et al. Identification of the cold tolerance of three maize varieties in the seedling stage [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(4): 803−808. (in Chinese)
    [13] 张海艳. 低温对鲜食玉米种子萌发及幼苗生长的影响 [J]. 植物生理学报, 2013, 49(4):347−350.

    ZHANG H Y. Effects of low temperature on seed germination and seedling growth of fresh corn [J]. Plant Physiology Journal, 2013, 49(4): 347−350. (in Chinese)
    [14] 王芳, 王淇, 赵曦阳. 低温胁迫下植物的表型及生理响应机制研究进展 [J]. 分子植物育种, 2019, 17(15):5144−5153.

    WANG F, WANG Q, ZHAO X Y. Research progress of phenotype and physiological response mechanism of plants under low temperature stress [J]. Molecular Plant Breeding, 2019, 17(15): 5144−5153. (in Chinese)
    [15] 王成, 李月明, 郝楠, 等. 玉米自交系发芽期至苗期耐冷性鉴定 [J]. 种子, 2019, 38(12):6−12.

    WANG C, LI Y M, HAO N, et al. Identification of Cold Tolerance of Maize Inbred lines from Germination to Seedling Stage [J]. Seed, 2019, 38(12): 6−12. (in Chinese)
    [16] DARVIZHEH H, ZAHEDI M, ABBASZADEH B, et al. Changes in some antioxidant enzymes and physiological indices of purple coneflower (Echinacea purpurea L. ) in response to water deficit and foliar application of salicylic acid and spermine under field condition [J]. Scientia Horticulturae, 2019, 247: 390−399. doi: 10.1016/j.scienta.2018.12.037
    [17] BUERGER P, ALVAREZ-ROA C, COPPIN C W, et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance [J]. Science Advances, 2020, 6(20): eaba2498. doi: 10.1126/sciadv.aba2498
    [18] SATO Y, MASUTA Y, SAITO K, et al. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa [J]. Plant Cell Reports, 2011, 30(3): 399−406. doi: 10.1007/s00299-010-0985-7
    [19] 张巽, 郝建平, 王璞, 等. 灌浆期低温对离体培养玉米强弱势粒发育的影响 [J]. 中国农业科学, 2018, 51(12):2263−2273.

    ZHANG X, HAO J P, WANG P, et al. Effects of low temperature on maize superior and inferior kernels development during grain filling in vitro [J]. Scientia Agricultura Sinica, 2018, 51(12): 2263−2273. (in Chinese)
    [20] YI Q, ÁLVAREZ-IGLESIAS L, MALVAR R A, et al. A worldwide maize panel revealed new genetic variation for cold tolerance [J]. Theoretical and Applied Genetics, 2021, 134(4): 1083−1094. doi: 10.1007/s00122-020-03753-3
    [21] ZHAO J, LI K W, WANG R, et al. Yield data provide new insight into the dynamic evaluation of maize’s climate suitability: A case study in Jilin Province, China [J]. Atmosphere, 2019, 10(6): 305. doi: 10.3390/atmos10060305
    [22] SINGH S, KUMAR V, KAPOOR D, et al. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions [J]. Physiologia Plantarum, 2020, 168(2): 301−317. doi: 10.1111/ppl.13002
    [23] KIDOKORO S, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Transcriptional regulatory network of plant cold-stress responses [J]. Trends in Plant Science, 2022, 27(9): 922−935. doi: 10.1016/j.tplants.2022.01.008
    [24] 杨德光, 马月, 蒋芳芳, 等. CaCl2对低温胁迫及恢复后玉米自交系种子萌发及幼苗生理特性的影响 [J]. 华北农学报, 2017, 32(S1):147−152. doi: 10.7668/hbnxb.2017.S1.026

    YANG D G, MA Y, JIANG F F, et al. Effects of CaCl2 on seed germination and seedling physiological characteristics of maize inbred lines after low temperature stress and recovery [J]. Acta Agriculturae Boreali-Sinica, 2017, 32(S1): 147−152. (in Chinese) doi: 10.7668/hbnxb.2017.S1.026
    [25] 杨小环, 赵维峰, 孙娜娜, 等. 外源水杨酸缓解低温胁迫对玉米种子萌发和早期幼苗生长伤害的生理机制 [J]. 核农学报, 2017, 31(9):1811−1817. doi: 10.11869/j.issn.100-8551.2017.09.1811

    YANG X H, ZHAO W F, SUN N N, et al. Physiological mechanisms of exogenous salicylic acid-mediated low temperature tolerance in seed germination and early seedling growth of maize [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(9): 1811−1817. (in Chinese) doi: 10.11869/j.issn.100-8551.2017.09.1811
    [26] 张建国, 王振华, 曹靖生, 等. 不同来源国内外玉米自交系耐低温评价利用研究 [J]. 玉米科学, 2019, 27(6):7−12.

    ZHANG J G, WANG Z H, CAO J S, et al. Evaluation and utilization of low temperature tolerance of maize inbred lines from different sources [J]. Journal of Maize Sciences, 2019, 27(6): 7−12. (in Chinese)
    [27] 胡宇, 梁烜赫, 赵鑫, 等. 低温冷凉区覆膜玉米子粒灌浆速率和产量特征分析 [J]. 玉米科学, 2019, 27(5):95−100.

    HU Y, LIANG X H, ZHAO X, et al. Analysis of grain filling rate and yield characteristics of film-covered maize in cold climate areas [J]. Journal of Maize Sciences, 2019, 27(5): 95−100. (in Chinese)
    [28] 龚金龙, 张洪程, 胡雅杰, 等. 灌浆结实期温度对水稻产量和品质形成的影响 [J]. 生态学杂志, 2013, 32(2):482−491.

    GONG J L, ZHANG H C, HU Y J, et al. Effects of air temperature during rice grain-filling period on the formation of rice grain yield and its quality [J]. Chinese Journal of Ecology, 2013, 32(2): 482−491. (in Chinese)
  • 加载中
图(8)
计量
  • 文章访问数:  197
  • HTML全文浏览量:  72
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 录用日期:  2024-03-06
  • 修回日期:  2024-02-19
  • 网络出版日期:  2024-05-08
  • 刊出日期:  2024-03-28

目录

    /

    返回文章
    返回