Growth and Photosynthesis of Brassica napus Seedlings Affected by Organic Manure Application on Acid Red Soil under Aluminum Stress
-
摘要:
目的 红壤铝毒是限制作物生长的主要因素,畜禽粪便等有机物料作为改善土壤酸度和推动国家化肥零增长行动计划的重要途径之一,其对铝毒胁迫下作物生长及光合荧光特性的影响及其机理研究具有重要意义。 方法 利用盆栽试验,探究不施畜禽粪便(CK)、施用猪粪10 g·kg−1(P10)、猪粪30 g·kg−1(P30)、猪粪50 g·kg−1(P50)、鸡粪10 g·kg−1(C10)、鸡粪30 g·kg−1(C30)、鸡粪50 g·kg−1(C50)、鸡粪猪粪各15 g·kg−1(PC15)等8个处理对酸性土壤铝毒胁迫下油菜(Brassica napus L.)生物量、光合作用参数和叶绿素荧光特性的影响。 结果 在土壤铝毒胁迫下,不同畜禽粪便处理均促进了油菜幼苗地上部生物量、光合色素含量、光合作用和叶绿素荧光特性,在第80天各处理均显著大于对照组(P<0.05),表明畜禽粪便有效缓解红壤铝胁迫对油菜幼苗生长的毒害作用。施用等量鸡粪处理比猪粪更有利于促进油菜幼苗地上部生物量、光合色素含量,但对光合作用参数、Fv/Fm值和qP的促进作用较弱,而且鸡粪、猪粪混施处理光合色素含量、光合参数Tr、Gs、Ci、qN均大于单施处理(P<0.05),说明高pH值的鸡粪更利于促进油菜生长,而高养分含量的猪粪更利于促进油菜光合荧光特性。 结论 猪粪施用量50 g·kg−1对油菜生长及光合荧光特性的铝毒胁迫缓解作用最佳,而鸡粪最佳施用量为30 g·kg−1。就油菜幼苗生长和光合荧光特性而言,畜禽粪便种类筛选、最佳用量确定并结合土壤酸度调控对缓解红壤铝毒至关重要。 Abstract:Objectives Effects of applying organic manure on the growth and photosynthesis of plants cultivated on acid red soil contaminated by aluminum were studied. Methods In a pot experiment, aluminum-laden acid red soil was used as control (CK) or blended with either pig manure at the rate of 10 g·kg−1 (P10), 30 g·kg−1 (P30), or 50 g·kg−1 (P50), chicken manure at 10 g·kg−1 (C10), 30 g·kg−1 (C30), or 50 g·kg−1 (C50), or pig and chicken manures at 15 g·kg−1 each (PC15). Biomass and photosynthetic properties including chlorophyll fluorescence indexes of Brassica napus L. seedlings grown in the pots were determined. Results Application of the organic manure in the soil significant improved the aboveground biomass, photosynthetic pigment content, and chlorophyll fluorescence indexes of the seedlings over CK (P<0.05). In 80 d after the treatments, these indicators were higher than CK indicating the heavy metal toxicity in the soil had been gradually alleviated by chelation. At a same application rate, chicken manure rendered a greater effect than pig manure on the increases of aboveground biomass and photosynthetic pigment but less on the photosynthetic parameters, Fv/Fm and qP, while the combination of chicken and pig manures performed superior to either chicken or pig manure alone on the photosynthetic pigment content, Tr, Gs, Ci, and qN (P<0.05). It appeared that the alkaline chicken manure benefited the growth more and that the nutrient-rich pig manure did the photosynthesis more for the seedlings. Conclusions To effectively mitigate the aluminum stress on B. napus L. seedlings grown in an acid red soil, an application of pig manure at 50 g·kg−1, and chicken manure at 30 g·kg−1 with appropriate adjustments according to the actual field conditions was recommended. -
Key words:
- Acid red soil /
- organic manures /
- aluminum stress /
- growth /
- photosynthetic fluorescence /
- Brassica napus L.
-
图 1 不同畜禽粪便处理油菜地上部生物量和光合荧光参数相关性分析
a:35 d,b:80 d。**、*表示极显著相关(P<0.01)及显著相关(P<0.05)。
Figure 1. Correlations between aboveground biomass and photosynthetic fluorescence indexes of seedlings under varied treatments
a and b represent 35 d and 80 d incubation, respectively. ** and * mean extremely significant correlation at P<0.01 and significant correlation at P<0.05, respectively.
表 1 供试样品基本理化性质
Table 1. Physicochemical properties of specimens
样品
SamplepH值
pH value有机质
Organic matter/%速效钾
Available K/
(mg·kg−1)水解氮
Hydrolyzable N/
(mg·kg−1)有效磷
Olsen-P/
(mg·kg−1)活性铝
Reactive Al/
(mg·kg−1)土样 Soil 4.50 2.98 44.5 123 4.65 0.284 鸡粪 Chicken manure 7.60 35.46 1235 2998 846 — 猪粪 Pig manure 7.20 46.82 2171 4186 1283 — “—”代表未检出。
“—” denotes value not detected.表 2 不同畜禽粪便处理对油菜地上部生物量、土壤pH和活性铝含量的影响
Table 2. Effects of manure applications on aboveground biomass and pH and reactive aluminium in soil
处理
Treatment第35天生物量
Biomass at 35 d/g第80天生物量
Biomass at 80 d/gpH 活性铝
Reactive Al/(mg·kg−1)CK 0.68±0.12 b 1.87±0.31 d 4.66±0.10 d 0.273±0.024 a P10 0.91±0.28 a 3.59±0.56 c 5.27±0.07 bc 0.138±0.021 c P30 0.92±0.17 a 4.50±0.34 b 5.57±0.23 b 0.137±0.014 c P50 0.87±0.35 ab 4.05±0.62 bc 5.76±0.15 b 0.137±0.012 c C10 0.89±0.19 ab 4.31±0.39 b 5.19 ±0.13 c 0.243±0.025 ab C30 0.95±0.21 a 5.08±0.39 ab 5.58±0.17 b 0.127±0.016 cd C50 1.08±0.32 a 5.13±0.54 a 6.23±0.06 a 0.135±0.018 c PC15 0.88±0.26 ab 4.98±0.54 b 5.31±0.18 bc 0.214±0.026 bc 同列数据后不同小写字母表示不同处理间差异显著(P<0.05)。表3~5同。
Data with different lowercase letters on same column indicate significant differences at 0.05 level. Same for Tables 3–5.表 3 不同畜禽粪便处理油菜叶片光合色素变化规律
Table 3. Changes in photosynthetic pigment content of seedlings under varied treatments
处理
Treatment叶绿素a
Chl-a /(mg ·g−1)叶绿素b
Chl-b/(mg·g−1)叶绿素a+叶绿素b
Chl-a+ Chl-b/ (mg·g−1)叶绿素a/叶绿素b
Chl-a/ Chl-b35天
Day 3580天
Day 8035天
Day 3580天
Day 8035天
Day 3580天
Day 8035天
Day 3580天
Day 80CK 3.59±0.77 d 5.11±1.10 cd 1.32±0.31 d 1.76±0.54 d 4.92±1.12 e 6.87±1.28 d 2.72±0.26 ab 2.91±0.27 a P10 4.53±1.12 bc 6.45±1.27 bc 1.82±0.39 bc 2.42±0.68 c 6.34±1.32 c 8.87±1.51 c 2.48±0.23 bc 2.66±0.25 a P30 4.58±1.21 bc 6.52±1.37 bc 1.73±0.39 bc 2.30±0.69 c 6.31±1.40 c 8.82±1.60 c 2.65±0.25 ab 2.83±0.27 a P50 6.19±1.83 b 8.81±2.07 b 2.09±0.54 b 2.78±0.93 bc 8.29±2.06 b 11.59±2.35 b 2.96±0.28 a 3.17±0.30 a C10 6.48±1.87 ab 9.23±2.11 ab 2.24±0.56 ab 2.97±0.97 bc 8.72±2.12 ab 12.21±2.42 ab 2.89±0.27 a 3.09±0.29 a C30 3.86±0.95 c 5.49±1.07 c 1.56±0.34 cd 2.07±0.58 c 5.42±1.13 cd 7.57±1.28 c 2.47±0.23 bc 2.65±0.25 a C50 8.28±2.17 a 11.79±2.46 a 3.15±0.72 a 4.19±1.25 a 11.43±2.52 a 15.98±2.88 a 2.63±0.25 ab 2.81±0.27 a PC15 6.26±1.59 ab 8.91±1.79 b 2.47±0.54 ab 3.29±0.94 ab 8.73±1.85 ab 12.19±2.12 ab 2.53±0.23 b 2.71±0.26 a 表 4 不同畜禽粪便处理油菜的光合特性
Table 4. Photosynthetic characteristics of seedlings under varied treatments
处理
Treatment净光合速率 Pn/
(μmol·m−2·s−1)蒸腾速率 Tr/
( mmol·m−2·s−1)气孔导度 Gs/
( mmol·m−2·s−1)胞间CO2浓度 Ci/
(μmol·mol−1)水分利用效率 WUE/
(mmol·mol−1)35天 Day 35 CK 3.32±0.15 d 1.35±0.37 d 128.00±4.38 d 319.03±3.17 a 1.08±0.21 d P10 11.27±0.91 ab 2.64±0.13 ab 178.33±11.05 b 254.67±10.71 b 4.31±0.41 b P30 11.76±0.35 a 2.73±0.13 a 177.67±10.40 b 240.33±7.45 bc 4.50±0.32 b P50 12.33±0.23 a 3.08±0.21 a 236.67±11.42 a 249.67±9.13 b 4.05±0.27 bc C10 7.93±0.68 c 1.89±0.15 c 134.67±7.33 cd 248.04±3.84 b 3.59±0.15 c C30 11.21±0.12 ab 2.20±0.01 bc 142.00±2.08 c 226.33±6.39 c 5.08±0.23 a C50 8.17±0.55 c 2.29±0.31 b 147.01±12.69 c 217.67±10.18 c 5.13±0.34 a PC15 10.60±0.57 b 2.67±0.03 ab 190.00±4.06 ab 257.02±11.08 b 3.98±0.25 bc 80天 Day 80 CK 4.22±0.29 e 2.03±0.75 d 177.28±37.23 e 367.84±68.05 a 1.43±0.45 e P10 14.34±1.79 ab 3.97±0.52 ab 246.99±50.63 b 319.10±20.74 b 5.72±0.88 bc P30 14.96±0.69 a 4.10±0.53 a 246.07±78.74 b 301.13±19.57 bc 5.97±0.69 b P50 15.69±0.45 a 4.63±0.97 a 327.79±88.50 a 312.84±32.85 b 5.34±0.58 bc C10 10.09±1.33 d 2.84±0.43 b 186.52±27.98 d 310.79±23.31 b 4.76±0.32 d C30 14.26±0.24 a 3.30±0.03 c 196.67±45.23 cd 283.59±1.42 c 6.74±0.49 ab C50 10.39±1.08 d 3.44±1.06 bc 203.61±69.23 c 272.75±42.27 c 6.81±0.74 a PC15 13.49±1.11 bc 4.01±0.12 a 263.15±65.78 b 322.04±4.83 b 5.28±0.54 c 表 5 不同畜禽粪便处理油菜光合荧光参数变化
Table 5. Changes in photosynthetic fluorescence indexes of seedlings under varied treatments
处理
Treatment光化学最大量子产量
Fv/Fm光合电子传递速率
ΦPSII光化学淬灭系数
qP光化学淬灭系数
qN35天
Day 3580天
Day 8035天
Day 3580天
Day 8035天
Day 3580天
Day 8035天
Day 3580天
Day 80CK 0.69±0.02 b 0.84±0.01 c 0.45±0.02 c 0.61±0.11 c 0.22±0.13 c 0.34±0.10 c 0.32±0.11 d 0.24±0.05 d P10 0.73±0.01 a 0.89±0.01 a 0.51±0.04 b 0.69±0.13 b 0.48±0.07 a 0.85±0.05 a 0.81±0.13 b 0.60±0.06 b P30 0.78±0.01 a 0.95±0.02 a 0.53±0.03 ab 0.72±0.15 ab 0.51±0.09 a 0.85±0.06 a 0.86±0.15 ab 0.64±0.07 b P50 0.71±0.01 a 0.86±0.01 b 0.59±0.04 a 0.80±0.08 a 0.41±0.13 a 0.72±0.08 a 0.67±0.08 b 0.50±0.04 b C10 0.75±0.01 a 0.91±0.01 a 0.60±0.02 a 0.82±0.05 a 0.33±0.02 a 0.58±0.01 b 0.40±0.05 c 0.29±0.02 c C30 0.76±0.01 a 0.92±0.01 a 0.64±0.03 a 0.87±0.12 a 0.34±0.01 b 0.60±0.01 b 0.42±0.12 c 0.31±0.06 c C50 0.72±0.02 a 0.87±0.01 ab 0.60±0.04 a 0.82±0.13 a 0.29±0.11 bc 0.51±0.07 b 0.37±0.13 c 0.27±0.06 c PC15 0.73±0.02 a 0.88±0.02 ab 0.62±0.01 a 0.84±0.21 a 0.39±0.05 ab 0.69±0.03 ab 0.98±0.21 a 0.73±0.09 a -
[1] ZHU Q C, DE VRIES W, LIU X J, et al. Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980-2010 [J]. The Science of the Total Environment, 2018, 618: 1497−1505. doi: 10.1016/j.scitotenv.2017.09.289 [2] 周晓阳, 徐明岗, 周世伟, 等. 长期施肥下我国南方典型农田土壤的酸化特征 [J]. 植物营养与肥料学报, 2015, 21(6):1615−1621. doi: 10.11674/zwyf.2015.0629ZHOU X Y, XU M G, ZHOU S W, et al. Soil acidification characteristics in Southern China’s croplands under long-term fertilization [J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1615−1621. (in Chinese) doi: 10.11674/zwyf.2015.0629 [3] ZHU Q C, LIU X J, HAO T X, et al. Modeling soil acidification in typical Chinese cropping systems [J]. The Science of the Total Environment, 2018, 613/614: 1339−1348. doi: 10.1016/j.scitotenv.2017.06.257 [4] ZHU H H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China [J]. Environmental Pollution, 2016, 219: 99−106. doi: 10.1016/j.envpol.2016.10.043 [5] 孔繁翔, 桑伟莲, 蒋新, 等. 铝对植物毒害及植物抗铝作用机理 [J]. 生态学报, 2000, 20(5):855−862. doi: 10.3321/j.issn:1000-0933.2000.05.023KONG F X, SANG W L, JIANG X, et al. Aluminum toxicity and tolerance in plants [J]. Acta Ecologica Sinica, 2000, 20(5): 855−862. (in Chinese) doi: 10.3321/j.issn:1000-0933.2000.05.023 [6] MA J F, RYAN P R. Foreword: Understanding how plants cope with acid soils [J]. Functional Plant Biology, 2010, 37(4): 3−6. [7] JIN S Q, ZHANG B, WU B, et al. Decoupling livestock and crop production at the household level in China [J]. Nature Sustainability, 2021, 4: 48−55. [8] 谢光辉, 包维卿, 刘继军, 等. 中国畜禽粪便资源研究现状述评 [J]. 中国农业大学学报, 2018, 23(4):75−87. doi: 10.11841/j.issn.1007-4333.2018.04.10XIE G H, BAO W Q, LIU J J, et al. An overview of researches on livestock and poultry excreta resource in China [J]. Journal of China Agricultural University, 2018, 23(4): 75−87. (in Chinese) doi: 10.11841/j.issn.1007-4333.2018.04.10 [9] ZUBAIR M, WANG S Q, ZHANG P Y, et al. Biological nutrient removal and recovery from solid and liquid livestock manure: Recent advance and perspective [J]. Bioresource Technology, 2020, 301: 122823. doi: 10.1016/j.biortech.2020.122823 [10] 李燕青, 温延臣, 林治安, 等. 不同有机肥与化肥配施对氮素利用率和土壤肥力的影响 [J]. 植物营养与肥料学报, 2019, 25(10):1669−1678. doi: 10.11674/zwyf.18417LI Y Q, WEN Y C, LIN Z A, et al. Effect of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1669−1678. (in Chinese) doi: 10.11674/zwyf.18417 [11] YAN L, RIAZ M, LIU J Y, et al. The aluminum tolerance and detoxification mechanisms in plants; recent advances and prospects [J]. Critical Reviews in Environmental Science and Technology, 2022, 52(9): 1491−1527. doi: 10.1080/10643389.2020.1859306 [12] RIAZ M, YAN L, WU X W, et al. Boron alleviates the aluminum toxicity in trifoliate orange by regulating antioxidant defense system and reducing root cell injury [J]. Journal of Environmental Management, 2018, 208: 149−158. [13] LI X W, LI Y L, MAI J W, et al. Boron alleviates aluminum toxicity by promoting root alkalization in transition zone via polar auxin transport [J]. Plant Physiology, 2018, 177(3): 1254−1266. doi: 10.1104/pp.18.00188 [14] CHEN L S. Physiological responses and tolerance of plant shoot to aluminum toxicity [J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(2): 143−155. [15] 应小芳, 刘鹏, 徐根娣. 土壤中的铝及其植物效应的研究进展 [J]. 生态环境, 2003, 12(2):237−239.YING X F, LIU P, XU G D. The advance in the research of aluminum in soil and its influence on plant [J]. Ecology and Environmental Sciences, 2003, 12(2): 237−239. (in Chinese) [16] 徐芬芬, 程诗雨, 田玉清. 铝胁迫对花生根系生长和生理特性的影响 [J]. 河南农业科学, 2014, 43(9):52−55. doi: 10.3969/j.issn.1004-3268.2014.09.012XU F F, CHENG S Y, TIAN Y Q. Effects of aluminum stress on growth and physiological characteristics in peanut root [J]. Journal of Henan Agricultural Sciences, 2014, 43(9): 52−55. (in Chinese) doi: 10.3969/j.issn.1004-3268.2014.09.012 [17] 应小芳, 刘鹏. 铝胁迫对大豆叶片光合特性的影响 [J]. 应用生态学报, 2005, 16(1):166−170. doi: 10.3321/j.issn:1001-9332.2005.01.034YING X F, LIU P. Effects of aluminum stress on photosynthetic characters of soybean [J]. Chinese Journal of Applied Ecology, 2005, 16(1): 166−170. (in Chinese) doi: 10.3321/j.issn:1001-9332.2005.01.034 [18] 付斌, 刘宏斌, 胡万里, 等. 施用牛粪对土壤-油菜系统氮素组分的影响 [J]. 土壤通报, 2016, 47(5):1177−1183.FU B, LIU H B, HU W L, et al. Effects of cow manure application on nitrogen cycling in soil-rape systems [J]. Chinese Journal of Soil Science, 2016, 47(5): 1177−1183. (in Chinese) [19] 李可, 孙彤, 孙涛, 等. 施用鸡粪有机肥对种植小油菜土壤微生物群落结构多样性的影响 [J]. 农业环境科学学报, 2020, 39(10):2316−2324. doi: 10.11654/jaes.2020-0036LI K, SUN T, SUN T, et al. Effects of applying organic fertilizer from chicken excrement on the microbial community structural diversity in soils planted with Chinese cabbage(Brassica chinensis) [J]. Journal of Agro-Environment Science, 2020, 39(10): 2316−2324. (in Chinese) doi: 10.11654/jaes.2020-0036 [20] 王逗, 杨杰, 廖汝佳, 等. 化肥有机肥配施对油菜营养生长期根系分泌物的影响 [J]. 中国土壤与肥料, 2021, (5):95−102. doi: 10.11838/sfsc.1673-6257.20303WANG D, YANG J, LIAO R J, et al. Effects of chemical fertilizers combined with organic fertilizers on root exudates of rape during vegetative growth period [J]. Soil and Fertilizer Sciences in China, 2021(5): 95−102. (in Chinese) doi: 10.11838/sfsc.1673-6257.20303 [21] 陈梅, 陈亚华, 沈振国, 等. 猪粪对红壤铝毒的缓解效应 [J]. 植物营养与肥料学报, 2002, 8(2):173−176. doi: 10.3321/j.issn:1008-505X.2002.02.008CHEN M, CHEN Y H, SHEN Z G, et al. Amelioration of aluminum toxicity on wheat plants grown in acid red soil by pig manure [J]. Plant Natrition and Fertilizen Science, 2002, 8(2): 173−176. (in Chinese) doi: 10.3321/j.issn:1008-505X.2002.02.008 [22] 吕焕哲, 王凯荣, 谢小立, 等. 有机物料对酸性红壤铝毒的缓解效应 [J]. 植物营养与肥料学报, 2007, 13(4):637−641. doi: 10.3321/j.issn:1008-505X.2007.04.016LÜ H Z, WANG K R, XIE X L, et al. Alleviation of organic manure on aluminum toxicity in acid red soil [J]. Plant Nutrition and Fertilizer Science, 2007, 13(4): 637−641. (in Chinese) doi: 10.3321/j.issn:1008-505X.2007.04.016 [23] 易冬莲. 油菜生产现状及发展对策 [J]. 湖南农业科学, 1998, (5):47−48.YI D L. Current situation and development countermeasures of rapeseed production [J]. Hunan Agricultural Sciences, 1998(5): 47−48. (in Chinese) [24] 国家统计局, 中国指数研究院. 中国房地产统计年鉴-2014[M]. 北京: 中国统计出版社, 2014. [25] 闫磊, 姜存仓, Muhammad Riaz, 等. 不同形态硼对油菜幼苗铝毒的缓解效应及其FTIR特征分析 [J]. 作物学报, 2017, 43(12):1817−1826. doi: 10.3724/SP.J.1006.2017.01817YAN L, JIANG C C, RIAZ M, et al. Mitigative effect of different forms of boron on aluminum toxicity of rape seedlings and its FTIR characteristics [J]. Acta Agronomica Sinica, 2017, 43(12): 1817−1826. (in Chinese) doi: 10.3724/SP.J.1006.2017.01817 [26] 韩德鹏, 吕伟生, 陈明, 等. 缓释硼肥种肥用量对红壤油菜生长发育和产量的影响 [J]. 核农学报, 2021, 35(10):2394−2403. doi: 10.11869/j.issn.100-8551.2021.10.2394HAN D P, LYU W S, CHEN M, et al. Effects of the application rate of slow-release boric fertilizer on the growth and yield of rapeseed (Brassica napus L. ) in red soil cultivated land under the simultaneous sowing of fertilizer and seeds [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(10): 2394−2403. (in Chinese) doi: 10.11869/j.issn.100-8551.2021.10.2394 [27] LOFTON J, GODSEY C B, ZHANG H. Determining aluminum tolerance and critical soil pH for winter canola production for acidic soils in temperate regions [J]. Agronomy Journal, 2010, 102(1): 327−332. doi: 10.2134/agronj2009.0252 [28] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999. [29] BILGER W, BJÖRKMAN O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis [J]. Photosynthesis Research, 1990, 25(3): 173−185. doi: 10.1007/BF00033159 [30] SCHREIBER U, GADEMANN R, RALPH P J, et al. Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements [J]. Plant and Cell Physiology, 1997, 38(8): 945−951. doi: 10.1093/oxfordjournals.pcp.a029256 [31] 余居华, 钟继承, 范成新, 等. 湖泊基质客土改良的环境效应: 对芦苇生长及光合荧光特性的影响 [J]. 环境科学, 2015, 36(12):4444−4454.YU J H, ZHONG J C, FAN C X, et al. Environmental effect of substrate amelioration on lake: Effects on Phragmites communis growth and photosynthetic fluorescence characteristics [J]. Environmental Science, 2015, 36(12): 4444−4454. (in Chinese) [32] DELHAIZE E, RYAN P R. Aluminum toxicity and tolerance in plants [J]. Plant Physiology, 1995, 107(2): 315−321. doi: 10.1104/pp.107.2.315 [33] SAMAC D A, TESFAYE M. Plant improvement for tolerance to aluminum in acid soils–a review [J]. Plant Cell, Tissue and Organ Culture, 2003, 75(3): 189−207. doi: 10.1023/A:1025843829545 [34] DAWSON S P, DENNISON W C. Effects of ultraviolet and photosynthetically active radiation on five seagrass species [J]. Marine Biology, 1996, 125(4): 629−638. doi: 10.1007/BF00349244 [35] ROELOFS J G M, BROUWER E, BOBBINK R. Restoration of aquatic macrophyte vegetation in acidified and eutrophicated shallow soft water wetlands in the Netherlands[M]//NIENHUIS PH, GULATI RD. Ecological Restoration of Aquatic and Semi-Aquatic Ecosystems in the Netherlands (NW Europe). Dordrecht: Springer, 2002: 171-180. [36] CALLEJA M L, MARBÀ N, DUARTE C M. The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments [J]. Estuarine, Coastal and Shelf Science, 2007, 73(3/4): 583−588.