Germination of Acacia cincinnata Seeds Promoted by Applied Electric Field
-
摘要:
目的 分析不同电场、时间及两者交互处理对卷荚相思种子萌发特性的影响,为卷荚相思种子萌发及可持续经营提供理论参考。 方法 以卷荚相思种子为研究对象,采用室内模拟试验,以不同电场强度和处理时间为控制因素,电压强度为0.0、0.2、0.4、0.6、0.8、1.0 kV·cm−1,时间处理为0、15、30、45、60 min,研究不同电场强度和时间交互处理对其种子萌发特性的影响。 结果 随着电场强度增强,处理时间的延长,卷荚相思种子的发芽率、发芽势和发芽指数均呈现不同程度的变化趋势。其中,在处理时间15、30、60 min下发芽率随着电场强度的增强呈现先降后升再降的趋势,但在处理时间45 min下发芽率随着电场强度的增强呈现先升后降的趋势;而发芽势和发芽指数均在电场强度0.6~0.8 kV·cm−1和处理时间45 min下处于最优状态,且与CK相比具有显著差异(P<0.05)。经过多元非线性回归分析得出,不同电场强度与时间交互处理下的最优回归方程为:Y=7.73+135.23X1+1.24X2-86.16X12−0.00911X22−0.75X1X2(R2=0.81,P<0.05)。聚类分析结果电场和时间交互环境处理对发芽指数有非常显著的影响。 结论 电场和时间两者交互处理对卷荚相思种子萌发特性具有一定的影响,发芽率在0.6 kV·cm−1处理45 min最高,说明适宜电场强度和处理时间可以提高卷荚相思种子发芽率。 Abstract:Objective Effect of electric field and treatment time applied to Acacia cincinnata seeds on germination was investigated. Method A. cincinnata seeds were treated by electric voltages ranging from 0 (CK) to 1.0 kV·cm−1 for 15, 30, 45, or 60m prior to germination under normal conditions. Indicators of germination displayed by the seeds were analyzed. Result The seeds exposed to an increasing electric field for up to 60 m germinated at a rate that showed a down-up-down pattern with a peak at 45m. The germination potential and index were at the highest under 0.6−0.8 kV·cm−1 for 45 m and significantly different from CK (P<0.05). A best fit regression function between the applied electric field and time was found to be Y = 7.73 + 135.23 X1 + 1.24 X2−86.16 X12−0.00911 X22 - 0.75 X1 X2 at R2 = 0.81 (P<0.05). A cluster analysis indicated an extremely significant effect of the electric field/time interaction exerted on the seed germination index. Conclusion The of an electric field and treatment time applied on A. cincinnata seeds significantly affected the germination with a rate peaked under 0.6 kV·cm−1 for 45 m. -
Key words:
- Acacia cincinnata /
- electric field /
- seed germination /
- cluster analysis /
- nonlinear regression analysis
-
图 1 不同电场强度与时间交互处理下的聚类分析
①热图中红色表示电场对指标有促进作用,且颜色越深,作用越强;② t1-0.2、t2-0.2、t3-0.2、t4-0.2代表0.2 kV·cm−1,t1~t4分别代表处理时间为15、30、45和60 min,以此类推;③GE:发芽率,GR:发芽势,GI:发芽指数。
Figure 1. Clustering of applied electric field and treatment time.
①Red indicates how electric field promotes indicators--the darker the color, the stronger the effect; ② t1−0.2, t2−0.2, t3−0.2, and t4−0.2 represent treatments under 0.2kV·cm−1; t1-t4 represent treatments of 15, 30, 45, and 60m, respectively. Same for the others; ③GE stands for germination rate; GR stands for germination potential; GI stands for germination index.
表 1 不同电场强度与时间交互处理对卷荚相思种子发芽率的影响
Table 1. Effect of applied electric field and treatment time on germination rate of A. cincinnata seeds
(单位:%) 电场强度
Electric field strength/(kV·cm−1)处理时间 Handling time 0 min 15 min 30 min 45 min 60 min 0.0 66.00±4.00 aA 66.00±4.00 aA 66.00±4.00 aB 66.00±4.00 aC 66.00±4.00 aAB 0.2 66.00±4.00 aA 48.67±2.52 cC 55.00±2.00 bcD 66.00±3.00 aC 60.67±5.77 abB 0.4 66.00±4.00 aA 56.00±2.00 bB 67.33±1.15 aB 70.33±1.53 aAB 70.00±3.46 aA 0.6 66.00±4.00 bA 67.67±2.52 abA 71.33±3.06 abAB 75.00±3.00 aA 74.67±7.57 aA 0.8 66.00±4.00 cA 66.67±2.08 bcA 74.33±3.51 aA 71.33±2.52 abAB 70.00±2.00 abcA 1.0 66.00±4.00 aA 65.33±2.52 aA 60.33±3.51 abC 59.33±2.52 bD 50.00±2.00 cC 同行中不同小写字母代表不同处理时间存在显著差异(P<0.05),同列中不同大写字母代表不同电场强度存在显著差异(P<0.05)。下同。
Data with different lowercase letters on same row represent significant differences under different treatment times (P<0.05); and those with different uppercase letters on same column represent significant differences under different electric field (P<0.05). Same for below.表 2 不同电场强度与时间交互处理对卷荚相思种子发芽势的影响
Table 2. Effect of applied electric field and treatment time on germination potential of A. cincinnata seeds
(单位:%) 电场强度
Electric field strength/(kV·cm−1)处理时间 Handling time 0 min 15 min 30 min 45 min 60 min 0.0 39.67±2.08 aA 39.67±2.08 aCD 39.67±2.08 aB 39.67±2.08 aB 39.67±2.08 aB 0.2 39.67±2.08 abA 30.51±1.47 cE 36.24±3.31 abB 40.38±3.19 aB 35.33±1.15 bBC 0.4 39.67±2.08 abA 37.99±1.98 cD 38.38±4.65 cB 42.43±5.00 abB 46.67±4.16 aA 0.6 39.67±2.08 bA 48.02±1.60 aA 49.99±4.52 aA 50.58±1.87 aA 49.00±3.00 aA 0.8 39.67±2.08 cA 47.33±3.88 bAB 50.37±1.46 abA 52.73±1.79 aA 47.33±3.05 bA 1.0 39.67±2.08 abA 42.98±3.61 aBC 41.26±3.85 aB 41.23±5.27 aB 33.19±2.71 bC 表 3 不同电场强度与时间交互处理对卷荚相思种子发芽指数的影响
Table 3. Effect of applied electric field and treatment time on germination index of A. cincinnata seeds
电场强度
Electric field strength/(kV·cm−1)处理时间 Handling time 0 min 15 min 30 min 45 min 60 min 0.0 8.12±0.40 aA 8.12±0.40 aB 8.12±0.40 aBC 8.12±0.40 aCD 8.12±0.40 aBCD 0.2 8.12±0.40 abA 6.21±0.41 cD 7.38±0.63 bC 9.25±1.01 aABC 7.79±0.51 bCD 0.4 8.12±0.40 abA 7.12±0.47 bC 8.74±0.77 aAB 8.63±0.79 aBC 9.15±0.36 aAB 0.6 8.12±0.40 bA 9.24±0.66 abA 9.83±0.71 aA 9.57±0.55 abAB 9.35±1.18 abA 0.8 8.12±0.40 cA 8.91±0.22 bcAB 9.67±0.55 abA 10.12±0.52 aA 8.85±0.47 bcABC 1.0 8.12±0.40 aA 8.16±0.37 aB 7.64±0.70 abBC 7.15±0.23 bD 7.09±0.33 bD 表 4 电场和时间交互处理对卷荚相思种子形态指标影响的双因素方差分析
Table 4. Two-way ANOVA on effects of applied electric field and treatment time on morphological indexes of A. cincinnata seeds
参数
Parameter电场强度
Electric field strength处理时间
Handling time电场强度×处理时间
electric field strength×
Handling timeF值
F valueP值
P valueF值
F valueP值
P valueF值
F valueP值
P value发芽率 GE 51.004 0.000 13.908 0.000 8.292 0.000 发芽势 GR 42.144 0.000 4.332 0.010 3.139 0.003 发芽指数 GI 27.919 0.000 7.365 0.000 4.294 0.000 表 5 不同电场强度与时间交互处理对发芽率非线性回归模型
Table 5. Nonlinear regression model between seed germination rate and applied electric field/time
方程拟合度
R2调整后R2
Adjusted R2平方和 Square sum df 均方 Mean square F值 F value 回归
regression残差
residual error回归
regression残差
residual error回归
regression残差
residual error0.81 0.79 3251.04548 779.93786 5 54 650.2091 14.44329 45.01806 -
[1] 陈胜, 韩金发, 沈海春, 等. 卷荚相思嫩枝扦插技术研究 [J]. 西南林学院学报, 2007, 27(6):30−34.CHEN S, HAN J F, SHEN H C, et al. Cuttage experiment with tender cuttings of Acacia continma [J]. Journal of Southwest Forestry College, 2007, 27(6): 30−34. (in Chinese) [2] 唐静. 物理农业技术在农业生产中的应用研究 [J]. 农村经济与科技, 2018, 29(16):23. doi: 10.3969/j.issn.1007-7103.2018.16.020TANG J. Study on the application of physical agricultural technology in agricultural production [J]. Rural Economy and Science-Technology, 2018, 29(16): 23. (in Chinese) doi: 10.3969/j.issn.1007-7103.2018.16.020 [3] 陈建中. 高压电场处理对谷子幼苗生理效应研究[D]. 太谷: 山西农业大学, 2016CHEN J Z. Physiological effects of high voltage electric field on millet seedling[D]. Taigu: Shanxi Agricultural University, 2016. (in Chinese) [4] 汪禄祥, 刘家富, 张小林, 等. 果蔬贮藏、保鲜中所采用的物理技术方法 [J]. 食品工业科技, 1996, 17(4):77−79.WANG L X, LIU J F, ZHANG X L, et al. Physical techniques and methods used in storage and preservation of fruits and vegetables [J]. Science and Technology of Food Industry, 1996, 17(4): 77−79. (in Chinese) [5] 关玉贵, 刘云, 王云鹤, 等. He-Ne激光提高蛋鸡产蛋率影响的研究 [J]. 激光杂志, 1996, 17(2):95−97.GUAN Y G, LIU Y, WANG Y H, et al. Study on the effect of He-Ne laser on improving the laying rate of laying He-Ne [J]. Laser Journal, 1996, 17(2): 95−97. (in Chinese) [6] 白亚乡, 胡玉才, 杨桂娟. 物理技术在水产养殖中的应用 [J]. 物理, 2002, 31(9):589−592.BAI Y X, HU Y C, YANG G J. Application of physics technology in aquaculture [J]. Physics, 2002, 31(9): 589−592. (in Chinese) [7] 张秀华. 电离辐射生物学效应及其在农业上的应用 [J]. 安徽农业科学, 1995, 23(2):187−188.ZHANG X H. Biological effects of ionizing radiation and its application in agriculture [J]. Journal of Anhui Agricultural Sciences, 1995, 23(2): 187−188. (in Chinese) [8] 白亚乡, 胡玉才, 迟建卫. 物理技术在农业生产中的应用进展 [J]. 沈阳农业大学学报, 2003, 34(3):232−235. doi: 10.3969/j.issn.1000-1700.2003.03.021BAI Y X, HU Y C, CHI J W. Application progress of phycical techniques in agriculture [J]. Journal of Shenyang Agricultural University, 2003, 34(3): 232−235. (in Chinese) doi: 10.3969/j.issn.1000-1700.2003.03.021 [9] 刘慧娜, 张克亮, 赵大球, 等. 种子休眠与萌发综述 [J]. 分子植物育种, 2020, 18(2):621−627.LIU H N, ZHANG K L, ZHAO D Q, et al. Advances in studies of seed dormancy and germination [J]. Molecular Plant Breeding, 2020, 18(2): 621−627. (in Chinese) [10] 朱冬雪, 窦家本, 刘平. 不同静电场对水稻种子萌发吸水和幼苗根系活力的影响 [J]. 贵州农业科学, 1997, 25(3):38−40.ZHU D X, DOU J B, LIU P. Effects of different electrostatic fields on water absorption during rice seed germination and root activity of seedlings [J]. Guizhou Agricultural Sciences, 1997, 25(3): 38−40. (in Chinese) [11] 温伟. 电场处理对燕麦在盐胁迫下种子萌发及幼苗生长的影响[D]. 呼和浩特: 内蒙古大学, 2020.WEN W. Effects of electric field treatment on seed germination and seedling growth of oat under salt stress[D]. Hohhot: Inner Mongolia University, 2020. (in Chinese) [12] 赵剑, 马福荣, 杨文杰, 等. 高压静电场(HVEF)预处理种子对大豆幼苗抗冷害的影响 [J]. 生物物理学报, 1997, 13(3):147−152.ZHAO J, MA F R, YANG W J, et al. Effect of high voltage electrostatic field (HVEF) pretreatment on chilling injury resistance of soybean seedlings [J]. Acta Biophysica Sinica, 1997, 13(3): 147−152. (in Chinese) [13] 蔡兴旺, 林昌华. 高压静电场处理对黄瓜种子发芽的影响 [J]. 种子, 2002, 21(6):16−17.CAI X W, LIN C H. The influence of the process in high voltage static electricity field upon cucumber seeds [J]. Seed, 2002, 21(6): 16−17. (in Chinese) [14] 黄洪云, 杜宁, 张璇. 高压静电处理对种子萌发的生理生化影响 [J]. 种子, 2017, 36(12):74−76.HUANG H Y, DU N, ZHANG X. Physiological and biochemical effects of HVEF on seeds during their sprouting period [J]. Seed, 2017, 36(12): 74−76. (in Chinese) [15] 武翠卿, 武新慧, 崔清亮, 等. 高压脉冲电场对高粱种子萌发特性影响研究 [J]. 农机化研究, 2021, 43(1):138−145.WU C Q, WU X H, CUI Q L, et al. Study of effect of high pulse electric field on germination characteristics of Sorghum [J]. Journal of Agricultural Mechanization Research, 2021, 43(1): 138−145. (in Chinese) [16] 邓秋林, 杨正明, 陈雨, 等. 基于二次通用旋转组合设计的暗紫贝母优质高产施肥研究 [J]. 中国土壤与肥料, 2022, (6):96−103.DENG Q L, YANG Z M, CHEN Y, et al. Study on the high-quality and high-yield fertilization of Fritillaria unibracteata based on quadratic general rotary unitized design [J]. Soil and Fertilizer Sciences in China, 2022(6): 96−103. (in Chinese) [17] 金梦野, 李小华, 李昉泽, 等. 盐碱复合胁迫对水稻种子发芽的影响 [J]. 中国生态农业学报(中英文), 2020, 28(4):566−574.JIN M Y, LI X H, LI F Z, et al. Effects of mixed saline-alkali stress on germination of rice [J]. Chinese Journal of Eco-Agriculture, 2020, 28(4): 566−574. (in Chinese) [18] 国际种子检验协会编/颜启传, 毕辛华译. 1985国际种子检验规程[M]. 北京: 农业出版社, 1988. [19] GOLBASHY M, EBRAHIMI M, MOSTAFAVI K. Research Note Effects of drought stress on germination indices of corn hybrids (Zea mays L.) [J]. Electronic Journal of Plant Breeding, 2012, 3(1): 664−670. [20] 李玉梅, 冯颖, 姜云天, 等. 混合盐胁迫对东北薄荷种子萌发及幼苗生长的影响 [J]. 西北农林科技大学学报(自然科学版), 2019, 47(10):52−62.LI Y M, FENG Y, JIANG Y T, et al. Effects of mixed salt stress on seed germination and seedling growth of Mentha sachalinensis (Briq. ) Kudo [J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(10): 52−62. (in Chinese) [21] LIU Y, HOU L, LI Q. Effects of different mechanical treatments on Quercus variabilis, Q. wutaishanica and Q. robur acorn germination [J]. IForest - Biogeosciences and Forestry, 2015, 8(6): 728−734. doi: 10.3832/ifor1423-008 [22] 武翠卿, 孙静鑫, 武新慧, 等. 高压电场预处理杂粮种子对生长势及产量的影响 [J]. 中国农机化学报, 2022, 43(8):75−81.WU C Q, SUN J X, WU X H, et al. Effects of high voltage electric field pretreatment on growth potential and yield of miscellaneous grain seeds [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(8): 75−81. (in Chinese) [23] 李美清, 吴沿友, 李青林. 高压静电场对水培番茄生理指标与产量的影响 [J]. 农业机械学报, 2015, 46(11):145−150,136. doi: 10.6041/j.issn.1000-1298.2015.11.020LI M Q, WU Y Y, LI Q L. Influence of high voltage electrostatic field on physiological indexes and yield of hydroponic tomato [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 145−150,136. (in Chinese) doi: 10.6041/j.issn.1000-1298.2015.11.020 [24] 黄大星, 李丽群, 蔡兴旺. 高压静电技术在作物种子处理中的应用 [J]. 农机化研究, 2008, 30(11):183−184,196.HUANG D X, LI L Q, CAI X W. The application of high voltage static electric technology in crop seed process [J]. Journal of Agricultural Mechanization Research, 2008, 30(11): 183−184,196. (in Chinese) [25] 丁孺牛, 易伟松, 杨国正, 等. 高压静电场对油菜种子品质的影响及机理初探 [J]. 湖北农业科学, 2004, 43(6):34−36. doi: 10.3969/j.issn.0439-8114.2004.06.012DING R N, YI W S, YANG G Z, et al. Effects of high voltage electrostatic field on the quality of rape seeds and microcosmic mechanism [J]. Hubei Agricultural Sciences, 2004, 43(6): 34−36. (in Chinese) doi: 10.3969/j.issn.0439-8114.2004.06.012 [26] WHITE E, FINNAN J. Crop structure in winter oats and the effect of nitrogen on quality-related characters [J]. Journal of Crop Improvement, 2017, 31(6): 758−779. doi: 10.1080/15427528.2017.1355344 [27] 张效明. 种子处理技术在提高种子活力上的应用 [J]. 农业开发与装备, 2021, (9):118−119. doi: 10.3969/j.issn.1673-9205.2021.09.057ZHANG X M. Application of seed treatment technology in improving seed vigor [J]. Agricultural Development & Equipments, 2021(9): 118−119. (in Chinese) doi: 10.3969/j.issn.1673-9205.2021.09.057 [28] 栾欣昱, 宋智青, 杜佳欣, 等. 高压电晕电场处理紫花苜蓿的生物效应 [J]. 种子, 2019, 38(9):18−23.LUAN X Y, SONG Z Q, DU J X, et al. Biological effects on alfalfa treated by high voltage Corona field [J]. Seed, 2019, 38(9): 18−23. (in Chinese) [29] 张俐, 申勋业, 杨方. 高压静电场对生物效应影响的研究进展 [J]. 东北农业大学学报, 2000, 31(3):307−312.ZHANG L, SHEN X Y, YANG F. Influence of high-voltage electrostatic field to the biological effect BIOLOGICAL EFFECT [J]. Journal of Northeast Agricultural University, 2000, 31(3): 307−312. (in Chinese) [30] 王朔楠, 孙静, 郭嘉莹, 等. 种子发芽指标及其测算方法[J]. 麦类作物学报, 2022: 1-7.WANG S N, SUN J, GUO J Y, et al. Overview of Seed Germination Indices and Their Determination Methods[J]. Journal of Triticeae Crops, 2022: 1-7. [31] 刘继宏. 物理农业技术在种子选后处理中的应用 [J]. 智慧农业导刊, 2022, 2(5):61−63.LIU J H. Application of physical agriculture technology in post-treatment of seed selection [J]. Journal of Smart Agriculture, 2022, 2(5): 61−63. [32] 白亚乡, 胡玉才. 高压静电场对农作物种子生物学效应原发机制的探讨 [J]. 农业工程学报, 2003, 19(2):49−51. doi: 10.3321/j.issn:1002-6819.2003.02.010BAI Y X, HU Y C. Original mechanism of biological effects of electrostatic field on crop seeds [J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(2): 49−51. (in Chinese) doi: 10.3321/j.issn:1002-6819.2003.02.010 [33] 胡建芳, 陈建中, 王玉国, 等. 优化高压电场处理提高高粱种子活力 [J]. 农业工程学报, 2015, 31(12):253−259. doi: 10.11975/j.issn.1002-6819.2015.12.034HU J F, CHEN J Z, WANG Y G, et al. Optimization of condition for improving sorghum seed vigor by high voltage electric field [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 253−259. (in Chinese) doi: 10.11975/j.issn.1002-6819.2015.12.034