Identification and Expressions of YUCCA Family in Passiflora edulis
-
摘要:
目的 黄素单加氧酶(YUCCA)基因是吲哚-3-乙酸(Indole-3-acetic acid, IAA)生物合成的主要限速酶基因之一,在植物生长发育中起着重要调控作用。本研究利用生物信息学方法对百香果(Passiflora edulis Sims.)YUCCA基因家族成员进行鉴定,以期揭示百香果YUCCA家族基因在激素响应中的功能,同时为YUCCA家族基因在其他物种中的生物信息学研究提供参考。 方法 利用生物信息学方法分析百香果YUCCA基因编码蛋白质的理化性质和保守结构域,基因的染色体定位、基因结构、系统进化树、顺式作用元件等;利用qRT-PCR探究部分成员在植物生长调节剂IAA处理下的表达情况。 结果 百香果基因组中共鉴定出29个YUCCA家族成员,不均匀分布于8条染色体,基因长度(552~9210 bp)存在明显差异,含有1~8个内含子,同时具有8个保守基序。通过系统进化树分析,发现百香果YUCCA基因家族可划分为3类,聚在同一分类中的百香果YUCCA基因具有高度的保守性,同时发现百香果的YUCCA基因与苜蓿(Medicago sativa L.)、拟南芥(Arabidopsis thaliana)亲缘关系更近,而与水稻(Oryza sativa L.)的亲缘关系较远。顺式作用元件分析显示,百香果YUCCA基因家族启动子受多种激素所诱导,可响应多种逆境胁迫。转录组数据分析结果表明:PeYUCCA6、PeYUCCA11和PeYUCCA16在台农百香果和黄金百香果叶片中呈现较低表达或者不表达,其中PeYUCCA23在台农百香果和黄金百香果的表达量最高,推测该基因对百香果叶片的发育有较大影响。qRT-PCR分析结果表明,在100 μmol·L−1 IAA处理后,PeYUCCA7、PeYUCCA13、PeYUCCA17、PeYUCCA24 和PeYUCCA26基因表达量显著升高。 结论 YUCCA基因家族成员在 IAA处理下的表达差异较大,YUCCA基因可能在植物生长调节剂IAA处理下的百香果生长发育和抵御逆境环境过程中发挥重要作用。 -
关键词:
- 百香果 /
- 吲哚-3-乙酸 /
- YUCCA 基因家族 /
- 生物信息学 /
- 定量分析
Abstract:Objective Bioinformatics of YUCCA family encoding the flavin-containing monooxygenase associated with biosynthesis of indole-3-acetic acid (IAA) in passion fruit was studied. Methods Bioinformatic methods were applied to analyze the physicochemical properties, conserved domains, chromosome location, structure, phylogenetic tree, and cis-acting elements of the genes in Passiflora edulis Sims. qRT-PCR was used to determine the expressions of some members under IAA treatment. Results There were 29 YUCCA members unevenly distributed in 8 chromosomes of P. edulis. They significantly differed in length that ranged from 552 bp to 9210 bp and contained 1–8 introns and 8 conserved motifs. A phylogenetic tree analysis divided the family into three distinct categories, and within a same class the members were highly conservative. Genetically, the genes were more closely related to Medicago sativa L. and Arabidopsis thaliana than Oryza sativa L. The cis-acting element analysis indicated that the promoter of the family genes could be induced by various hormones and respond to various stresses. PeYUCCA6, PeYUCCA11, and PeYUCCA16 showed low or no expression in the leaves of Tainong and Golden Passion Fruit, but PeYUCCA23 had a high expression suggesting its predominant role in the plant development. The treatment of 100 μmol·L−1 IAA significantly elevated the expressions of PeYUCCA7, PeYUCCA13, PeYUCCA17, PeYUCCA24, and PeYUCCA26. Conclusion The expressions of YUCCAs in P. edulis varied greatly under IAA treatment. But as a family, the genes likely played an important role in the growth, development, and resistance to adverse environment of passion fruits. -
Key words:
- Passiflora edulis Sims /
- IAA /
- YUCCA family /
- bioinformatics /
- quantitative analysis
-
表 1 YUCCA基因家族成员实时荧光定量PCR引物
Table 1. Primers for qRT-PCR on YUCCAs in passion fruit
基因
Gene正向引物序列(5'-3')
Forward primer(5'-3')反向引物序列(5'-3')
Reverse primer (5'-3')Pe60S AGGTGGGTAACAGGATTATC TGGCTGTCTTTTGGTGCTG PeYUCCA7 GGGAAGAAAGTGCTGGTCGT TGTCAACGAGCCAAAGTGGT PeYUCCA13 TGCCAGAGTTTGTGGGGTTG TGGGCAAGACATGAACCGAG PeYUCCA17 GTTGGGTGCGGCAATTCAG GTTGGCAGCTAGAAGGAGGA PeYUCCA24 TGTCTGAGTTTGGTGGCGAT TCTCGGCAGAACGTGAACC PeYUCCA25 GGGGACCTATTCTGCACACC GCATCTCTTGGGGCAAAACG PeYUCCA26 GGGAATGGAGGTGTGTTTGGA ACACATGGACAGCCCGAAAG 表 2 百香果YUCCA基因家族成员
Table 2. YUCCAs in passion fruit
基因ID
Gene name基因名称
Gene ID基因全长
Full length of genes/bp编码区长度
Coding area length/bpG+C含量
C+G content/%A+T含量
A+T content/%PeYUCCA1 ZX.01G0002140 2265 1593 41 59 PeYUCCA2 ZX.01G0002210 2612 1200 40 60 PeYUCCA3 ZX.01G0002240 2263 1593 41 59 PeYUCCA4 ZX.01G0004710 552 516 43 57 PeYUCCA5 ZX.01G0004780 4609 1977 38 62 PeYUCCA6 ZX.01G0004800 1651 1092 40 60 PeYUCCA7 ZX.01G0017780 1964 1275 43 57 PeYUCCA8 ZX.01G0025770 1602 1155 42 58 PeYUCCA9 ZX.01G0025830 1450 1152 42 58 PeYUCCA10 ZX.01G0025850 1412 1215 42 58 PeYUCCA11 ZX.01G0029730 2216 1557 42 58 PeYUCCA12 ZX.01G0086000 2409 1593 41 59 PeYUCCA13 ZX.01G0115230 1809 1293 43 57 PeYUCCA14 ZX.01G0126750 1718 1146 40 60 PeYUCCA15 ZX.01G0137550 1733 1146 40 60 PeYUCCA16 ZX.03G0007260 3263 1374 40 60 PeYUCCA17 ZX.04G0004260 1787 1200 43 57 PeYUCCA18 ZX.04G0005300 2979 1629 37 63 PeYUCCA19 ZX.04G0017390 2275 783 39 61 PeYUCCA20 ZX.04G0031510 1769 1293 44 56 PeYUCCA21 ZX.05G0003260 1706 1092 40 60 PeYUCCA22 ZX.06G0015980 9210 918 41 59 PeYUCCA23 ZX.07G0012040 3758 1467 40 60 PeYUCCA24 ZX.08G0000090 1981 1275 44 56 PeYUCCA25 ZX.09G0006460 2339 1275 43 57 PeYUCCA26 ZX.09G0011010 3589 1323 44 56 PeYUCCA27 ZX.09G0020980 1460 1164 41 59 PeYUCCA28 ZX.09G0021020 1263 1023 39 61 PeYUCCA29 ZX.09G0026980 1457 1161 41 59 表 3 百香果YUCCA蛋白的理化性质
Table 3. Physicochemical properties of YUCCA protein in passion fruit
蛋白名称
Protein氨基酸数量
Number of amino acid分子量
Molecular weight/Da等电点
pI不稳定指数
Instability index脂肪系数
Aliphatic index平均亲水指数
Grand average of hydropathicityPeYUCCA1 530 60025.48 8.79 36.52 91.96 −0.108 PeYUCCA2 399 44952.88 8.77 36.33 90.35 −0.132 PeYUCCA3 530 59901.36 8.86 36.45 93.25 −0.089 PeYUCCA4 171 19496.11 6.70 33.86 83.74 −0.353 PeYUCCA5 658 74050.52 8.60 38.14 93.92 −0.1 PeYUCCA6 363 40948.6 8.44 33.65 97.19 0.006 PeYUCCA7 424 47517.87 8.70 50.74 88.47 −0.163 PeYUCCA8 384 42813.29 8.51 35.85 82.99 −0.164 0PeYUCCA9 384 42248.58 8.39 36.22 83.49 −0.142 PeYUCCA10 404 44826.99 9.10 35.42 94.03 −0.082 PeYUCCA11 519 59666.11 8.66 46.14 80.58 −0.17 PeYUCCA12 530 59791.11 8.80 34.27 93.25 −0.104 PeYUCCA13 430 48121.4 8.21 48.71 90.4 −0.109 PeYUCCA14 381 43169.1 9.36 36.67 87.98 −0.239 PeYUCCA15 381 43196 9.26 37.02 85.43 −0.251 PeYUCCA16 457 52147.09 5.61 43.24 85.67 −0.361 PeYUCCA17 399 44585.34 8.88 41.46 89.65 −0.242 PeYUCCA18 542 61911.37 7.57 45.29 86.48 −0.18 PeYUCCA19 260 29366.12 5.62 37.73 80.46 −0.345 PeYUCCA20 430 48033.36 9.36 47.03 84.72 −0.237 PeYUCCA21 363 41357.16 9.25 38.59 85.62 −0.23 PeYUCCA22 305 35045.45 8.69 39.78 81.77 −0.216 PeYUCCA23 488 55653.62 5.65 50.21 76.6 −0.449 PeYUCCA24 424 47483.77 8.70 49.26 87.1 −0.191 PeYUCCA25 424 47495.97 8.64 48.26 84.15 −0.124 PeYUCCA26 440 48908.67 8.59 44.73 87.07 −0.122 PeYUCCA27 388 42840.19 8.20 37.54 81.88 −0.173 PeYUCCA28 340 37800.42 7.63 32.03 89.35 −0.094 PeYUCCA29 386 42561 8.37 34.48 85.08 −0.145 -
[1] 贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展 [J]. 植物学报, 2022, 57(3):263−275. doi: 10.11983/CBB21227JIA L X, QI Y H. Advances in the regulation of rice(Oryza sativa)grain shape by auxin metabolism, transport and signal transduction [J]. Chinese Bulletin of Botany, 2022, 57(3): 263−275. (in Chinese) doi: 10.11983/CBB21227 [2] 李中华. 多组学数据揭示棉花纤维发育转换期的遗传调控机制和重要代谢物[D]. 武汉: 华中农业大学, 2021.LI Z H. Multiomics data reveal the genetic regulation mechanism and important metabolites of cotton fiber development transition period[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese) [3] 莫福磊, 束艺, 陈秀玲, 等. 基于全基因组的番茄YUCCA基因家族生物信息学分析 [J]. 分子植物育种, 2020, 18(10):3159−3163.MO F L, SHU Y, CHEN X L, et al. Bioinformatics analysis of tomato YUCCA gene family based on whole genome [J]. Molecular Plant Breeding, 2020, 18(10): 3159−3163. (in Chinese) [4] 刘华彬, 张秦莹, 门淑珍. YUCCA基因家族在拟南芥胚胎发育过程中的表达模式研究 [J]. 南开大学学报(自然科学版), 2017, 50(4):1−7.LIU H B, ZHANG Q Y, MEN S Z. The expression patterns of YUCCA during embryo development in Arabidopsis [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2017, 50(4): 1−7. (in Chinese) [5] 李莉萍. 西番莲综合开发利用研究进展 [J]. 安徽农业科学, 2012, 40(28):13840−13843,13846. doi: 10.3969/j.issn.0517-6611.2012.28.062LI L P. Research progress of comprehensive development and utilization of passionflower [J]. Journal of Anhui Agricultural Sciences, 2012, 40(28): 13840−13843,13846. (in Chinese) doi: 10.3969/j.issn.0517-6611.2012.28.062 [6] LI C B, XIN M, LI L, et al. Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing [J]. Food Chemistry, 2021, 355: 129685. doi: 10.1016/j.foodchem.2021.129685 [7] FONSECA A M A, GERALDI M V, JUNIOR M R M, et al. Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects [J]. Food Research International, 2022, 160: 111665. doi: 10.1016/j.foodres.2022.111665 [8] XU M X, LI A D, TENG Y, et al. Exploring the adaptive mechanism of Passiflora edulis in Karst areas via an integrative analysis of nutrient elements and transcriptional profiles [J]. BMC Plant Biology, 2019, 19(1): 185. doi: 10.1186/s12870-019-1797-8 [9] XIA Z Q, HUANG D M, ZHANG S K, et al. Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit (Passiflora edulis Sims) [J]. Horticulture Research, 2021, 8: 14. doi: 10.1038/s41438-020-00455-1 [10] CHENG Y F, DAI X H, ZHAO Y D. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis [J]. Genes & Development, 2006, 20(13): 1790−1799. [11] YAMAMOTO Y, KAMIYA N, MORINAKA Y, et al. Auxin biosynthesis by the YUCCA genes in rice [J]. Plant Physiology, 2007, 143(3): 1362−1371. doi: 10.1104/pp.106.091561 [12] LI W L, ZHAO X Y, ZHANG X S. Genome-wide analysis and expression patterns of the YUCCA genes in maize [J]. Journal of Genetics and Genomics, 2015, 42(12): 707−710. doi: 10.1016/j.jgg.2015.06.010 [13] ZHAO B L, HE L L, JIANG C, et al. Lateral Leaflet Suppression 1 (LLS1), encoding the MtYUCCA1 protein, regulates lateral leaflet development in Medicago truncatula [J]. The New Phytologist, 2020, 227(2): 613−628. doi: 10.1111/nph.16539 [14] 袁美同, 李绍信, 纪丕钰, 等. 梨YUCCA基因家族的鉴定与生物信息学分析 [J]. 分子植物育种, 2021, 19(19):6328−6337.YUAN M T, LI S X, JI P Y, et al. Identification and bioinformatics analysis of YUCCA gene family in Pyrus [J]. Molecular Plant Breeding, 2021, 19(19): 6328−6337. (in Chinese) [15] 李志谦, 邹东方, 李靖雯, 等. 葡萄YUCCA家族基因的鉴定及在穗梗褪绿过程中的表达分析 [J]. 河南农业大学学报, 2022, 56(2):254−261. doi: 10.3969/j.issn.1000-2340.2022.2.hennannydxxb202202010LI Z Q, ZOU D F, LI J W, et al. Genome-wide identification of YUCCA gene family in grape and expression analysis during rachis degreening [J]. Journal of Henan Agricultural University, 2022, 56(2): 254−261. (in Chinese) doi: 10.3969/j.issn.1000-2340.2022.2.hennannydxxb202202010 [16] 张倩倩, 田守蔚, 张洁, 等. 西瓜YUCCA基因家族鉴定及在果实成熟过程中的表达分析 [J]. 中国蔬菜, 2019, (3):21−29.ZHANG Q Q, TIAN S W, ZHANG J, et al. Identification of YUCCA gene family and expression analysis during watermelon fruit ripening process [J]. China Vegetables, 2019(3): 21−29. (in Chinese) [17] ZHANG Y Y, MAO Q S, MA R J, et al. Genome-wide identification and expression analysis of the PpYUCCA gene family in weeping peach trees (Prunus persica ‘Pendula’) [J]. Horticulturae, 2022, 8(10): 878. doi: 10.3390/horticulturae8100878 [18] MA D N, DONG S S, ZHANG S C, et al. Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit (Passiflora edulis) [J]. Molecular Ecology Resources, 2021, 21(3): 955−968. doi: 10.1111/1755-0998.13310 [19] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009 [20] 何锐杰, 方庭, 余伟军, 等. 西番莲查尔酮合成酶(CHS)基因家族全基因组鉴定及表达模式 [J]. 应用与环境生物学报, 2022, 28(4):1066−1075.HE R J, FANG T, YU W J, et al. Genome-wide identification and expression analysis of the CHS gene family in passion fruit [J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(4): 1066−1075. (in Chinese) [21] TRIPATHI P, TAYADE R, MUN B G, et al. Silicon application differentially modulates root morphology and expression of PIN and YUCCA family genes in soybean (Glycine max L. ) [J]. Frontiers in Plant Science, 2022, 13: 842832. doi: 10.3389/fpls.2022.842832 [22] 梁栋. IAA和BR参与干旱胁迫影响烟草侧根发育的研究[D]. 北京: 中国农业科学院, 2021.LIANG D. Study on IAA and BR participating in drought stress affecting tobacco lateral root development[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese) [23] 李真. 毛白杨PtoWOX11/12a基因的抗逆功能研究[D]. 北京: 中国林业科学研究院, 2017.LI Z. Functional characterization of A PtoWOX11/12a gene in stress resistance of Populus tomentosa[D]. Beijing: Chinese Academy of Forestry, 2017. (in Chinese) [24] 李孟湛. SAUR15调控植物侧根及不定根发育的功能及分子机理研究[D]. 兰州: 兰州大学, 2022.LI M Z. Functions and molecular mechanisms of SAUR15 in regulating development of plant lateral and adventitious roots[D]. Lanzhou: Lanzhou University, 2022. (in Chinese) [25] 阚东阳, 柯学, Walid Ghidan, 等. 拟南芥图位克隆快速初定位系统的建立 [J]. 西南农业学报, 2018, 31(9):1765−1771.KAN D Y, KE X, WALID G, et al. Establishment of rapid initial localization system of Arabidopsis based on map-based cloning [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(9): 1765−1771. (in Chinese) [26] 丁义峰. 生长素相关基因调控桃果实成熟分子机制研究[D]. 武汉: 华中农业大学, 2018.DING Y F. Molecular mechanism of auxin related genes regulating peach fruit ripening[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese) [27] ABEL S, NGUYEN M D, THEOLOGIS A. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana [J]. Journal of Molecular Biology, 1995, 251(4): 533−549. doi: 10.1006/jmbi.1995.0454 [28] YAMAGUCHI N, WINTER C M, WU M F, et al. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis [J]. Science, 2014, 344(6184): 638−641. doi: 10.1126/science.1250498 [29] 金晓蕾. 外源激素对甜荞开花结实的影响及调控机制研究[D]. 呼和浩特: 内蒙古农业大学, 2019.JIN X L. Effect and regulation mechanism of exogenous hormones on flowering and fruiting in common buckwheat[D]. Hohhot: Inner Mongolia Agricultural University, 2019. (in Chinese)