• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百香果YUCCA基因家族鉴定与表达分析

潘佳怡 潘若云 江文洁 任锐 方庭

潘佳怡,潘若云,江文洁,等. 百香果YUCCA基因家族鉴定与表达分析 [J]. 福建农业学报,2024,39(2):165−174 doi: 10.19303/j.issn.1008-0384.2024.02.006
引用本文: 潘佳怡,潘若云,江文洁,等. 百香果YUCCA基因家族鉴定与表达分析 [J]. 福建农业学报,2024,39(2):165−174 doi: 10.19303/j.issn.1008-0384.2024.02.006
PAN J Y, PAN R Y, JIANG W J, et al. Identification and Expressions of YUCCA Family in Passiflora edulis [J]. Fujian Journal of Agricultural Sciences,2024,39(2):165−174 doi: 10.19303/j.issn.1008-0384.2024.02.006
Citation: PAN J Y, PAN R Y, JIANG W J, et al. Identification and Expressions of YUCCA Family in Passiflora edulis [J]. Fujian Journal of Agricultural Sciences,2024,39(2):165−174 doi: 10.19303/j.issn.1008-0384.2024.02.006

百香果YUCCA基因家族鉴定与表达分析

doi: 10.19303/j.issn.1008-0384.2024.02.006
基金项目: 福建省自然科学基金项目(2021J05022);福建省种业创新与产业化工程项目(zycxny2021010);福建省高原学科建设项目(102/71201801101)
详细信息
    作者简介:

    潘佳怡(2000 —),女,硕士研究生,主要从事果树遗传育种方向研究,E-mail:1161621228@qq.com

    通讯作者:

    方庭(1990 —),男,副教授,主要从事果树遗传育种方向研究,E-mail:fangting@fafu.edu.cn

  • 中图分类号: S667.9

Identification and Expressions of YUCCA Family in Passiflora edulis

  • 摘要:   目的  黄素单加氧酶(YUCCA)基因是吲哚-3-乙酸(Indole-3-acetic acid, IAA)生物合成的主要限速酶基因之一,在植物生长发育中起着重要调控作用。本研究利用生物信息学方法对百香果(Passiflora edulis Sims.)YUCCA基因家族成员进行鉴定,以期揭示百香果YUCCA家族基因在激素响应中的功能,同时为YUCCA家族基因在其他物种中的生物信息学研究提供参考。  方法  利用生物信息学方法分析百香果YUCCA基因编码蛋白质的理化性质和保守结构域,基因的染色体定位、基因结构、系统进化树、顺式作用元件等;利用qRT-PCR探究部分成员在植物生长调节剂IAA处理下的表达情况。  结果  百香果基因组中共鉴定出29个YUCCA家族成员,不均匀分布于8条染色体,基因长度(552~9210 bp)存在明显差异,含有1~8个内含子,同时具有8个保守基序。通过系统进化树分析,发现百香果YUCCA基因家族可划分为3类,聚在同一分类中的百香果YUCCA基因具有高度的保守性,同时发现百香果的YUCCA基因与苜蓿(Medicago sativa L.)、拟南芥(Arabidopsis thaliana)亲缘关系更近,而与水稻(Oryza sativa L.)的亲缘关系较远。顺式作用元件分析显示,百香果YUCCA基因家族启动子受多种激素所诱导,可响应多种逆境胁迫。转录组数据分析结果表明:PeYUCCA6PeYUCCA11PeYUCCA16在台农百香果和黄金百香果叶片中呈现较低表达或者不表达,其中PeYUCCA23在台农百香果和黄金百香果的表达量最高,推测该基因对百香果叶片的发育有较大影响。qRT-PCR分析结果表明,在100 μmol·L−1 IAA处理后,PeYUCCA7PeYUCCA13PeYUCCA17PeYUCCA24PeYUCCA26基因表达量显著升高。  结论  YUCCA基因家族成员在 IAA处理下的表达差异较大,YUCCA基因可能在植物生长调节剂IAA处理下的百香果生长发育和抵御逆境环境过程中发挥重要作用。
  • 图  1  百香果YUCCA 基因家族染色体定位

    Figure  1.  Location of YUCCA chromosomes in passion fruit

    图  2  百香果YUCCA 基因家族基因结构和保守基序

    Figure  2.  Structure and conserved motif of YUCCAs in passion fruit

    图  3  拟南芥、水稻、苜蓿和百香果YUCCA蛋白的基因家族进化树

    Pe:百香果;At:拟南芥;Os:水稻:Mt:苜蓿。

    Figure  3.  Evolution tree of YUCCAs in At, Os, Mt, and passion fruit

    Pe: P. edulis Sims; At: Arabidopsis thaliana(Linn.)Heynh;Os:Oryza sativa Linn; Mt: Medicago truncatula.

    图  4  百香果YUCCA 基因启动子的顺式作用元件预测

    Figure  4.  Predicted cis-acting elements of YUCCA promoter in passion fruit

    图  5  YUCCA基因在台农百香果和黄金百香果叶中的表达量

    Figure  5.  YUCCA expressions in Tainon and Golden Passion Fruits

    图  6  IAA处理后YUCCA基因的表达量分析

    *、**分别表示在0.05水平差异显著和0.01水平差异极显著。ns代表无显著性差异。

    Figure  6.  YUCCA expressions after IAA treatment

    * and ** indicate significant difference at 0.05 level and extremely significant difference at 0.01 level; ns means no significant difference.

    表  1  YUCCA基因家族成员实时荧光定量PCR引物

    Table  1.   Primers for qRT-PCR on YUCCAs in passion fruit

    基因
    Gene
    正向引物序列(5'-3')
    Forward primer(5'-3')
    反向引物序列(5'-3')
    Reverse primer (5'-3')
    Pe60S AGGTGGGTAACAGGATTATC TGGCTGTCTTTTGGTGCTG
    PeYUCCA7 GGGAAGAAAGTGCTGGTCGT TGTCAACGAGCCAAAGTGGT
    PeYUCCA13 TGCCAGAGTTTGTGGGGTTG TGGGCAAGACATGAACCGAG
    PeYUCCA17 GTTGGGTGCGGCAATTCAG GTTGGCAGCTAGAAGGAGGA
    PeYUCCA24 TGTCTGAGTTTGGTGGCGAT TCTCGGCAGAACGTGAACC
    PeYUCCA25 GGGGACCTATTCTGCACACC GCATCTCTTGGGGCAAAACG
    PeYUCCA26 GGGAATGGAGGTGTGTTTGGA ACACATGGACAGCCCGAAAG
    下载: 导出CSV

    表  2  百香果YUCCA基因家族成员

    Table  2.   YUCCAs in passion fruit

    基因ID
    Gene name
    基因名称
    Gene ID
    基因全长
    Full length of genes/bp
    编码区长度
    Coding area length/bp
    G+C含量
    C+G content/%
    A+T含量
    A+T content/%
    PeYUCCA1 ZX.01G0002140 2265 1593 41 59
    PeYUCCA2 ZX.01G0002210 2612 1200 40 60
    PeYUCCA3 ZX.01G0002240 2263 1593 41 59
    PeYUCCA4 ZX.01G0004710 552 516 43 57
    PeYUCCA5 ZX.01G0004780 4609 1977 38 62
    PeYUCCA6 ZX.01G0004800 1651 1092 40 60
    PeYUCCA7 ZX.01G0017780 1964 1275 43 57
    PeYUCCA8 ZX.01G0025770 1602 1155 42 58
    PeYUCCA9 ZX.01G0025830 1450 1152 42 58
    PeYUCCA10 ZX.01G0025850 1412 1215 42 58
    PeYUCCA11 ZX.01G0029730 2216 1557 42 58
    PeYUCCA12 ZX.01G0086000 2409 1593 41 59
    PeYUCCA13 ZX.01G0115230 1809 1293 43 57
    PeYUCCA14 ZX.01G0126750 1718 1146 40 60
    PeYUCCA15 ZX.01G0137550 1733 1146 40 60
    PeYUCCA16 ZX.03G0007260 3263 1374 40 60
    PeYUCCA17 ZX.04G0004260 1787 1200 43 57
    PeYUCCA18 ZX.04G0005300 2979 1629 37 63
    PeYUCCA19 ZX.04G0017390 2275 783 39 61
    PeYUCCA20 ZX.04G0031510 1769 1293 44 56
    PeYUCCA21 ZX.05G0003260 1706 1092 40 60
    PeYUCCA22 ZX.06G0015980 9210 918 41 59
    PeYUCCA23 ZX.07G0012040 3758 1467 40 60
    PeYUCCA24 ZX.08G0000090 1981 1275 44 56
    PeYUCCA25 ZX.09G0006460 2339 1275 43 57
    PeYUCCA26 ZX.09G0011010 3589 1323 44 56
    PeYUCCA27 ZX.09G0020980 1460 1164 41 59
    PeYUCCA28 ZX.09G0021020 1263 1023 39 61
    PeYUCCA29 ZX.09G0026980 1457 1161 41 59
    下载: 导出CSV

    表  3  百香果YUCCA蛋白的理化性质

    Table  3.   Physicochemical properties of YUCCA protein in passion fruit

    蛋白名称
    Protein
    氨基酸数量
    Number of amino acid
    分子量
    Molecular weight/Da
    等电点
    pI
    不稳定指数
    Instability index
    脂肪系数
    Aliphatic index
    平均亲水指数
    Grand average of hydropathicity
    PeYUCCA1 530 60025.48 8.79 36.52 91.96 −0.108
    PeYUCCA2 399 44952.88 8.77 36.33 90.35 −0.132
    PeYUCCA3 530 59901.36 8.86 36.45 93.25 −0.089
    PeYUCCA4 171 19496.11 6.70 33.86 83.74 −0.353
    PeYUCCA5 658 74050.52 8.60 38.14 93.92 −0.1
    PeYUCCA6 363 40948.6 8.44 33.65 97.19 0.006
    PeYUCCA7 424 47517.87 8.70 50.74 88.47 −0.163
    PeYUCCA8 384 42813.29 8.51 35.85 82.99 −0.164
    0PeYUCCA9 384 42248.58 8.39 36.22 83.49 −0.142
    PeYUCCA10 404 44826.99 9.10 35.42 94.03 −0.082
    PeYUCCA11 519 59666.11 8.66 46.14 80.58 −0.17
    PeYUCCA12 530 59791.11 8.80 34.27 93.25 −0.104
    PeYUCCA13 430 48121.4 8.21 48.71 90.4 −0.109
    PeYUCCA14 381 43169.1 9.36 36.67 87.98 −0.239
    PeYUCCA15 381 43196 9.26 37.02 85.43 −0.251
    PeYUCCA16 457 52147.09 5.61 43.24 85.67 −0.361
    PeYUCCA17 399 44585.34 8.88 41.46 89.65 −0.242
    PeYUCCA18 542 61911.37 7.57 45.29 86.48 −0.18
    PeYUCCA19 260 29366.12 5.62 37.73 80.46 −0.345
    PeYUCCA20 430 48033.36 9.36 47.03 84.72 −0.237
    PeYUCCA21 363 41357.16 9.25 38.59 85.62 −0.23
    PeYUCCA22 305 35045.45 8.69 39.78 81.77 −0.216
    PeYUCCA23 488 55653.62 5.65 50.21 76.6 −0.449
    PeYUCCA24 424 47483.77 8.70 49.26 87.1 −0.191
    PeYUCCA25 424 47495.97 8.64 48.26 84.15 −0.124
    PeYUCCA26 440 48908.67 8.59 44.73 87.07 −0.122
    PeYUCCA27 388 42840.19 8.20 37.54 81.88 −0.173
    PeYUCCA28 340 37800.42 7.63 32.03 89.35 −0.094
    PeYUCCA29 386 42561 8.37 34.48 85.08 −0.145
    下载: 导出CSV
  • [1] 贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展 [J]. 植物学报, 2022, 57(3):263−275. doi: 10.11983/CBB21227

    JIA L X, QI Y H. Advances in the regulation of rice(Oryza sativa)grain shape by auxin metabolism, transport and signal transduction [J]. Chinese Bulletin of Botany, 2022, 57(3): 263−275. (in Chinese) doi: 10.11983/CBB21227
    [2] 李中华. 多组学数据揭示棉花纤维发育转换期的遗传调控机制和重要代谢物[D]. 武汉: 华中农业大学, 2021.

    LI Z H. Multiomics data reveal the genetic regulation mechanism and important metabolites of cotton fiber development transition period[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
    [3] 莫福磊, 束艺, 陈秀玲, 等. 基于全基因组的番茄YUCCA基因家族生物信息学分析 [J]. 分子植物育种, 2020, 18(10):3159−3163.

    MO F L, SHU Y, CHEN X L, et al. Bioinformatics analysis of tomato YUCCA gene family based on whole genome [J]. Molecular Plant Breeding, 2020, 18(10): 3159−3163. (in Chinese)
    [4] 刘华彬, 张秦莹, 门淑珍. YUCCA基因家族在拟南芥胚胎发育过程中的表达模式研究 [J]. 南开大学学报(自然科学版), 2017, 50(4):1−7.

    LIU H B, ZHANG Q Y, MEN S Z. The expression patterns of YUCCA during embryo development in Arabidopsis [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2017, 50(4): 1−7. (in Chinese)
    [5] 李莉萍. 西番莲综合开发利用研究进展 [J]. 安徽农业科学, 2012, 40(28):13840−13843,13846. doi: 10.3969/j.issn.0517-6611.2012.28.062

    LI L P. Research progress of comprehensive development and utilization of passionflower [J]. Journal of Anhui Agricultural Sciences, 2012, 40(28): 13840−13843,13846. (in Chinese) doi: 10.3969/j.issn.0517-6611.2012.28.062
    [6] LI C B, XIN M, LI L, et al. Characterization of the aromatic profile of purple passion fruit (Passiflora edulis Sims) during ripening by HS-SPME-GC/MS and RNA sequencing [J]. Food Chemistry, 2021, 355: 129685. doi: 10.1016/j.foodchem.2021.129685
    [7] FONSECA A M A, GERALDI M V, JUNIOR M R M, et al. Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects [J]. Food Research International, 2022, 160: 111665. doi: 10.1016/j.foodres.2022.111665
    [8] XU M X, LI A D, TENG Y, et al. Exploring the adaptive mechanism of Passiflora edulis in Karst areas via an integrative analysis of nutrient elements and transcriptional profiles [J]. BMC Plant Biology, 2019, 19(1): 185. doi: 10.1186/s12870-019-1797-8
    [9] XIA Z Q, HUANG D M, ZHANG S K, et al. Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit (Passiflora edulis Sims) [J]. Horticulture Research, 2021, 8: 14. doi: 10.1038/s41438-020-00455-1
    [10] CHENG Y F, DAI X H, ZHAO Y D. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis [J]. Genes & Development, 2006, 20(13): 1790−1799.
    [11] YAMAMOTO Y, KAMIYA N, MORINAKA Y, et al. Auxin biosynthesis by the YUCCA genes in rice [J]. Plant Physiology, 2007, 143(3): 1362−1371. doi: 10.1104/pp.106.091561
    [12] LI W L, ZHAO X Y, ZHANG X S. Genome-wide analysis and expression patterns of the YUCCA genes in maize [J]. Journal of Genetics and Genomics, 2015, 42(12): 707−710. doi: 10.1016/j.jgg.2015.06.010
    [13] ZHAO B L, HE L L, JIANG C, et al. Lateral Leaflet Suppression 1 (LLS1), encoding the MtYUCCA1 protein, regulates lateral leaflet development in Medicago truncatula [J]. The New Phytologist, 2020, 227(2): 613−628. doi: 10.1111/nph.16539
    [14] 袁美同, 李绍信, 纪丕钰, 等. 梨YUCCA基因家族的鉴定与生物信息学分析 [J]. 分子植物育种, 2021, 19(19):6328−6337.

    YUAN M T, LI S X, JI P Y, et al. Identification and bioinformatics analysis of YUCCA gene family in Pyrus [J]. Molecular Plant Breeding, 2021, 19(19): 6328−6337. (in Chinese)
    [15] 李志谦, 邹东方, 李靖雯, 等. 葡萄YUCCA家族基因的鉴定及在穗梗褪绿过程中的表达分析 [J]. 河南农业大学学报, 2022, 56(2):254−261. doi: 10.3969/j.issn.1000-2340.2022.2.hennannydxxb202202010

    LI Z Q, ZOU D F, LI J W, et al. Genome-wide identification of YUCCA gene family in grape and expression analysis during rachis degreening [J]. Journal of Henan Agricultural University, 2022, 56(2): 254−261. (in Chinese) doi: 10.3969/j.issn.1000-2340.2022.2.hennannydxxb202202010
    [16] 张倩倩, 田守蔚, 张洁, 等. 西瓜YUCCA基因家族鉴定及在果实成熟过程中的表达分析 [J]. 中国蔬菜, 2019, (3):21−29.

    ZHANG Q Q, TIAN S W, ZHANG J, et al. Identification of YUCCA gene family and expression analysis during watermelon fruit ripening process [J]. China Vegetables, 2019(3): 21−29. (in Chinese)
    [17] ZHANG Y Y, MAO Q S, MA R J, et al. Genome-wide identification and expression analysis of the PpYUCCA gene family in weeping peach trees (Prunus persica ‘Pendula’) [J]. Horticulturae, 2022, 8(10): 878. doi: 10.3390/horticulturae8100878
    [18] MA D N, DONG S S, ZHANG S C, et al. Chromosome-level reference genome assembly provides insights into aroma biosynthesis in passion fruit (Passiflora edulis) [J]. Molecular Ecology Resources, 2021, 21(3): 955−968. doi: 10.1111/1755-0998.13310
    [19] CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [20] 何锐杰, 方庭, 余伟军, 等. 西番莲查尔酮合成酶(CHS)基因家族全基因组鉴定及表达模式 [J]. 应用与环境生物学报, 2022, 28(4):1066−1075.

    HE R J, FANG T, YU W J, et al. Genome-wide identification and expression analysis of the CHS gene family in passion fruit [J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(4): 1066−1075. (in Chinese)
    [21] TRIPATHI P, TAYADE R, MUN B G, et al. Silicon application differentially modulates root morphology and expression of PIN and YUCCA family genes in soybean (Glycine max L. ) [J]. Frontiers in Plant Science, 2022, 13: 842832. doi: 10.3389/fpls.2022.842832
    [22] 梁栋. IAA和BR参与干旱胁迫影响烟草侧根发育的研究[D]. 北京: 中国农业科学院, 2021.

    LIANG D. Study on IAA and BR participating in drought stress affecting tobacco lateral root development[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
    [23] 李真. 毛白杨PtoWOX11/12a基因的抗逆功能研究[D]. 北京: 中国林业科学研究院, 2017.

    LI Z. Functional characterization of A PtoWOX11/12a gene in stress resistance of Populus tomentosa[D]. Beijing: Chinese Academy of Forestry, 2017. (in Chinese)
    [24] 李孟湛. SAUR15调控植物侧根及不定根发育的功能及分子机理研究[D]. 兰州: 兰州大学, 2022.

    LI M Z. Functions and molecular mechanisms of SAUR15 in regulating development of plant lateral and adventitious roots[D]. Lanzhou: Lanzhou University, 2022. (in Chinese)
    [25] 阚东阳, 柯学, Walid Ghidan, 等. 拟南芥图位克隆快速初定位系统的建立 [J]. 西南农业学报, 2018, 31(9):1765−1771.

    KAN D Y, KE X, WALID G, et al. Establishment of rapid initial localization system of Arabidopsis based on map-based cloning [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(9): 1765−1771. (in Chinese)
    [26] 丁义峰. 生长素相关基因调控桃果实成熟分子机制研究[D]. 武汉: 华中农业大学, 2018.

    DING Y F. Molecular mechanism of auxin related genes regulating peach fruit ripening[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
    [27] ABEL S, NGUYEN M D, THEOLOGIS A. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana [J]. Journal of Molecular Biology, 1995, 251(4): 533−549. doi: 10.1006/jmbi.1995.0454
    [28] YAMAGUCHI N, WINTER C M, WU M F, et al. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis [J]. Science, 2014, 344(6184): 638−641. doi: 10.1126/science.1250498
    [29] 金晓蕾. 外源激素对甜荞开花结实的影响及调控机制研究[D]. 呼和浩特: 内蒙古农业大学, 2019.

    JIN X L. Effect and regulation mechanism of exogenous hormones on flowering and fruiting in common buckwheat[D]. Hohhot: Inner Mongolia Agricultural University, 2019. (in Chinese)
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  166
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 修回日期:  2023-11-13
  • 网络出版日期:  2024-03-28
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回