Expression and Function of Citrate Synthase Gene in Jackfruit
-
摘要:
目的 分析波罗蜜柠檬酸合酶基因(Artocarpus heterophyllus citrate synthase,AheCS)的生物学功能,研究柠檬酸含量与AheCS基因相对表达量的相关性,为探究AheCS基因在波罗蜜(Artocarpus heterophyllus Lam. , Ahe)果实有机酸代谢中的可能作用提供参考。 方法 以海大2号波罗蜜果实为材料,采用0.5 mg·L−1 1-甲基环丙烯(1-Methylcyclopropene,1-MCP)和1000 mg·L−1 外源乙烯利(ethrel , ETH )(40%)处理,研究室温(22±1) ℃、相对湿度90% 条件下波罗蜜果实成熟过程中柠檬酸的动态变化,克隆获得3个波罗蜜的CS基因(AheCS1 、 AheCS2 和 AheCS3),对其进行生物信息学分析,同时分析3个AheCS基因在不同采后处理下(自然成熟、外源乙烯催熟和1-MCP延缓成熟)的相对表达情况及其与柠檬酸含量的相关性。 结果 随着波罗蜜果实的自然成熟,果实中柠檬酸含量呈先上升后下降的变化趋势;外源ETH处理加速了柠檬酸的合成速率,提前了峰值出现的时间;1-MCP处理抑制了贮藏前期柠檬酸含量下降速率,推迟了高峰出现时间。生物信息学分析发现,AheCS1/2/3基因的开放阅读框(ORF)长1422~1827 bp,编码蛋白都含有柠檬酸合酶保守结构域WPNVDAHS,属于柠檬酸合酶家族成员。AheCS1/2/3蛋白氨基酸序列分别与柑橘(Citrus reticulata Blanco.)CsCS(MH_048698.1)、川桑(Morus notabilis C. K. Schneid.)MnCs(XP010087965.1) 、 红掌(Anthurium andraeanum Linden.)AaCS(JAT55223.1)亲缘关系最近,相似性分别达到86.49%、97.00%、86.00%。qRT-PCR结果显示: AheCS1/2/3基因在果实自然成熟(CK)前期表达量低,而后期表达量高;外源ETH处理提前了AheCS 1的表达峰值时间,整体提高了AheCS 2/3的表达量;而1-MCP处理推迟了AheCS1/2/3表达峰值出现时间,增加了AheCS1/2/3成熟后期的表达量。相关性分析发现,波罗蜜果实成熟过程中柠檬酸含量与AheCS1/2/3基因表达呈一定相关性,其中与AheCS2相关性显著。 结论 AheCS2是参与调控波罗蜜成熟过程中柠檬酸积累的潜在基因,可作为进一步研究波罗蜜AheCS基因的功能及遗传改良的候选基因。 Abstract:Objective The biological function of AheCS gene and the correlation between citric acid content and relative expression of AheCS gene were analyzed, and the possible role of AheCS gene in the metabolism of organic acids in jackfruit was discussed. Method AheCS1, AheCS2, and AheCS3 from fruits of A. heterophyllus Haida 2 were cloned for a bioinformatic analysis. At room temperature(22±1℃) and 90% RH, changes on the gene expression and citric acid content in the fruits under natural ripening process or exposed to either 0.5 mg·L−1 of 1-MCP or 1,000 mg·L−1 of 40% ethylene (ETH) were determined. Result The citric acid content in a naturally ripening jackfruit gradually rose and declined subsequently. It increased at an accelerated rate when exposed to ETH, but the rate was slowed down by the 1-MCP treatment. The ORFs of the three genes ranged from 1 422 bp to 1 827 bp containing conserved WPNVDAHS domain and belonging to the CS family. The amino acid sequences were phylogenetically closely related to those of CsCS (MH_048698.1) in citrus with a similarity of 86.49%, MnCS (XP010087965.1) in mulberry with a similarity of 97%, and AaCS (JAT55223.1) in anthurium with a similarity of 86%. The expressions of these genes were low in the early stage and raised subsequently during natural ripening (CK). However, the exogenous ETH hastened the increasing rate of AheCS1 expression and elevated the levels of AheCS2 and AheCS3 expressions, while 1-MCP delayed the rise but heightened the expression levels of the three genes at the stage near fruit maturity. The citric acid content of the ripening fruits generally positively correlated with the gene expressions. The correlation with AheCS2 reached a statistically significant level. Conclusion AheCS2 is a potential gene involved in the regulation of citric acid accumulation during the ripening process of jackfruit, and it can be a candidate gene for further study of the function and genetic improvement of the AheCS gene in jackfruit . -
Key words:
- Jackfruit /
- citrate acid /
- AheCS /
- cloning /
- gene expression
-
图 4 AheCS1/2/3 蛋白的多重序列比对
Co:油菜;Jc: 麻风树;Mn:川桑;Cm:柚;Pp:桃;Ps:西伯利亚杏;Mb:山荆子;Cu:葫芦;Aa:红掌;Pm:梅;Pas:牡丹;Ahe:波罗蜜;Cs:柑橘;Gu:甘草;AT:拟南芥.
Figure 4. Alignment of amino acid sequences of AheCS1, AheCS2, and AheCS3 proteins
Co: Camellia oleifera Abel.; Jc: Jatropha curcas L.; Mn: Morus notabilis C. K. Schneid.; Cm; Citrus maxima (Burm) Merr.; Pp: Prunus persica; Ps: Prunus sibirica L.; Mb: Malus baccata (L.) Borkh.; Cu: Cucurbita cv.; Aa: Anthurium andraeanum.; Pm:Armeniaca mume Sieb.; Pas: Paeonia × suffruticosa Andr.; Ahe:Artocarpus heterophyllus Lam.; Cs: Citrus reticulata Blanco.; Gu: Glycyrrhiza uralensis Fisch.; AT: Arabidopsis thaliana.
图 6 不同物种CS基因的系统发育树分析
St:马铃薯;Cf:甜椒;Cc:中粒咖啡;Co:油菜;As:山杏;Ps:牡丹;Js:泡核桃;Pp:桃;PpN:砂梨:Mb:山荆子;Pc:豆梨;AT:拟南芥;Os:水稻;Sb:高粱;Ahe:波罗蜜;SL:番茄。
Figure 6. Phylogenetic tree of CSs in various species
St: Solanum tuberosum L.; Cf: Capsicum frutescens L. ; Cc: Coffea canephora Pierre ex Froehn.; Co: Camellia oleifera.; As: Armeniaca sibirica (L.) Lam.; Ps:Paeonia × suffruticosa Andr.; Js: Juglans sigillata Dode.; Pp: Prunus persica.; PpN: Pyrus pyrifolia (Burm. f.) Nakai.; Mb: Malus baccata (L.) Borkh.; Pc: Pyrus calleryana Decne.; AT: Arabidopsis thaliana (L.) Heynh.; Os: Oryza sativa L.; Sb: Sorghum 'Bicolor'(L.) Moench.; Ahe: Artocarpus heterophyllus Lam. SL: Solanum lycopersicum L.
表 1 AheCS1、AheCS2和AheCS3基因全长引物序列
Table 1. Sequences of AheCS1, AheCS2, and AheCS3 primers
引物名称
Primer names引物序列(5′-3′)
Primer sequencesAheCS1-F
AheCS1-R
AheCS2-F
AheCS2-R
AheCS3-F
AheCS3-R5′-ATGGCCACCGGACAGCTATTCTCGCG-3′
5′-TCACTTGGTGTAAAGAACGTCCTCCCATG-3′
5′-ATGGTGTTCTTCAGGGGCGTGTCTGTGC-3′
5′-TCAAGACGAAGCCGCTTTCTTGCAGTAA-3′
5′-ATGGAATTGCCAGTCACGGCACGAGC-3′
5′-TTAAATGCCAGAACCCGCCAGCCGG-3′表 2 基因荧光定量引物序列
Table 2. Sequences of quantitative qRT-PCR primers
引物名称
Primer names引物序列(5′-3′)
Primer sequencesAheCS1-F 5′-AGAATCAAGCACTAAGGGACG-3′ AheCS1-R 5′-TTCAGGAATTTGTGGAGGC-3′ AheCS2-F 5′-GCCTCCCATCCTAACAGAAA-3′ AheCS2-R 5′-CGCTCGGTCCCATACTAACT-3′ AheCS3-F 5′- CCAACCGAGTTCTTCCCTG-3′ AheCS3-R 5′- GATAATGCCGCAACCAAAC-3′ GAPDH-F 5′- TTGAAGGGTGGNGCNAARAARG -3′ GAPDH-R 5′- ATAACCCCAYTCRTTRTCRTAC-3′ 表 3 AheCS1/2/3 蛋白的理化性质
Table 3. Physiochemical properties of AheCS1, AheCS2, and AheCS3 proteins
基因名称
Gene name氨基酸数
Number of amino acids分子质量
Molecular weight/kD等电点
pI脂肪系数
Aliphatic index不稳定系数
Instability index亲水性
Grand average of
hydropathicity含量最多的 3 种氨基酸
Top 3 amino acids/%AheCS1 608 151.18 4.96 25.29 45.73 0.698 Ala 25.3
Gly25.7
Thr27.5AheCS2 473 52.89 7.20 26.37 40.34 0.652 Gly24.6
Ala26.4
Thr29.7AheCS3 513 56.42 8.15 25.02 47.61 0.748 Ala25.0
Gly25.4
Thr26.3表 4 AheCS1/2/3 蛋白的亚细胞定位预测
Table 4. Predicted subcellular localization of AheCS1, AheCS2, and AheCS3 proteins
定位 Location AheCS1 AheCS2 AheCS3 细胞核 Nuclear 0.04 0.03 0.00 质膜 Plasma membrane 0.02 0.12 0.00 胞外 Extra-cellular 0.00 0.00 0.00 细胞质Cytoplasmic 8.81 0.00 0.00 线粒体 Mitochondria 0.07 6.94 0.00 细胞质内层 Endoplasm retic 0.08 0.00 0.33 过氧化物酶体Peroxisomal 0.00 5.91 9.41 高尔基体Golgi 0.00 0.01 0.14 叶绿体 Chloroplast 0.66 0.00 0.12 液泡 Vacuolar 0.31 0.00 0.00 表 5 AheCS1/2/3蛋白磷酸化和糖基化位点及二级结构组分
Table 5. Phosphorylation and glycosylation sites and secondary structure components of AheCS1, AheCS2, and AheCS3 proteins
基因名称
Gene name糖基化位点数
Number of glycosy/个磷酸化位点数
number of phosphorylation sites/个二级结构组分
secondary structure component/%丝氨酸
Ser苏氨酸
Thr酪氨酸
Tyrα-螺旋
α-helix延长链
Extend chainβ-转角
β-turn无规则卷曲
Random coilAheCS1 1 59 55 24 40.95 16.78 9.54 32.73 AheCS2 0 17 10 9 53.70 8.88 7.82 29.60 AheCS3 0 28 9 11 47.85 9.96 5.08 37.11 表 6 柠檬酸含量与AheCS1/2/3 基因表达的相关性分析
Table 6. Correlation between organic acids and AheCS1, AheCS2, and AheCS3
指标
Index柠檬酸
Citrate acidAheCS1 AheCS2 AheCS3 柠檬酸 1 AheCS1 0.450 1 AheCS2 0.887* 0.088 1 AheCS3 0.766 0.339 0.521 1 * 在 0.05 级别(双尾),相关性显著。
* indicates significant correlation at 0.05 level (two-tailed). -
[1] LI J X, ZHANG C L, LIU H, et al. Profiles of sugar and organic acid of fruit juices: A comparative study and implication for authentication [J]. Journal of Food Quality, 2020, 2020: 7236534. [2] 马晓倩. 柠檬酸含量对冰糖橙果实贮藏性能的影响及其代谢相关基因分析 [D]. 长沙: 湖南农业大学, 2020.MA X Q. Effect of citric acid content on storage performance of 'Bingtang' Sweet Orange and expression analysis of genes in citrate metabolism [D]. ChangSha: Hunan Agricultural University, 2020. (in Chinese) [3] SADKA A, DAHAN E, COHEN L, et al. Aconitase activity and expression during the development of lemon fruit [J]. Physiologia Plantarum, 2000, 108(3): 255−262. doi: 10.1034/j.1399-3054.2000.108003255.x [4] BLANKE M M, LENZ F. Fruit photosynthesis[J]. Plant, Cell & Environment, 1989, 12(1): 31-46. [5] KOYAMA H, TAKITA E, KAWAMURA A, et al. Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium [J]. Plant and Cell Physiology, 1999, 40(5): 482−488. doi: 10.1093/oxfordjournals.pcp.a029568 [6] PRACHAROENWATTANA I, CORNAH J E, SMITH S M. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination [J]. The Plant Cell, 2005, 17(7): 2037−2048. doi: 10.1105/tpc.105.031856 [7] OHLROGGE J, POLLARD M, BAO X, et al. Fatty acid synthesis: From CO2 to functional genomics [J]. Biochemical Society Transactions, 2000, 28(6): 567−573. doi: 10.1042/bst0280567 [8] SCHNARRENBERGER C, MARTIN W. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer [J]. European Journal of Biochemistry, 2002, 269(3): 868−883. doi: 10.1046/j.0014-2956.2001.02722.x [9] ZHAO H N, CHEN G J, SANG L N, et al. Mitochondrial citrate synthase plays important roles in anthocyanin synthesis in petunia [J]. Plant Science:an International Journal of Experimental Plant Biology, 2021, 305: 110835. [10] TOVAR-MÉNDEZ A, MIERNYK J A, RANDALL D D. Regulation of pyruvate dehydrogenase complex activity in plant cells [J]. European Journal of Biochemistry, 2003, 270(6): 1043−1049. doi: 10.1046/j.1432-1033.2003.03469.x [11] SADKA A, DAHAN E, OR E, et al. Comparative analysis of mitochondrial citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing Citrus varieties [J]. Functional Plant Biology, 2001, 28(5): 383. doi: 10.1071/PP00136 [12] CANEL C, BAILEY-SERRES J N, ROOSE M L. Molecular characterization of the mitochondrial citrate synthase gene of an acidless pummelo (Citrus maxima) [J]. Plant Molecular Biology, 1996, 31(1): 143−147. doi: 10.1007/BF00020613 [13] IANNETTA P P M, ESCOBAR N M, ROSS H A, et al. Identification, cloning and expression analysis of strawberry (Fragaria × ananassa) mitochondrial citrate synthase and mitochondrial malate dehydrogenase [J]. Physiologia Plantarum, 2004, 121(1): 15−26. doi: 10.1111/j.0031-9317.2004.00302.x [14] 叶思诚, 姚小华, 王开良, 等. 油茶柠檬酸合成酶(CS)基因的克隆和表达分析 [J]. 植物研究, 2016, 36(4):556−564. doi: 10.7525/j.issn.1673-5102.2016.04.011YE S C, YAO X H, WANG K L, et al. Cloning and expression analysis of citrate synthase(CS)gene in Camellia oleifera [J]. Bulletin of Botanical Research, 2016, 36(4): 556−564. (in Chinese) doi: 10.7525/j.issn.1673-5102.2016.04.011 [15] 王滕旭, 李正国, 杨迎伍, 等. 甜橙柠檬酸合酶基因的克隆及其表达分析 [J]. 中国农学通报, 2010, 26(10):65−69.WANG T X, LI Z G, YANG Y W, et al. Cloning and expression analysis of citrate synthase gene in orange [J]. Chinese Agricultural Science Bulletin, 2010, 26(10): 65−69. (in Chinese) [16] 赵宝庆, 任伟超, 王震, 等. 酸橙柠檬酸合酶基因电子克隆和生物信息学分析 [J]. 东北林业大学学报, 2019, 47(12):79−83.ZHAO B Q, REN W C, WANG Z, et al. In silico cloning and bioinformatics analysis of citrate synthase gene from Citrus aurantium [J]. Journal of Northeast Forestry University, 2019, 47(12): 79−83. (in Chinese) [17] 童晋, 詹高淼, 王新发, 等. 油菜柠檬酸合酶基因的克隆及在逆境下的表达 [J]. 作物学报, 2009, 35(1):33−40. doi: 10.3724/SP.J.1006.2009.00033TONG J, ZHAN G M, WANG X F, et al. Cloning of citrate synthase gene in rapeseed (Brassica napus L. ) and its expression under stresses [J]. Acta Agronomica Sinica, 2009, 35(1): 33−40. (in Chinese) doi: 10.3724/SP.J.1006.2009.00033 [18] 王俊宁, 刘建文, 李凤娣, 等. 菠萝蜜果实采后糖、酸、蛋白质和VC含量的变化 [J]. 西南师范大学学报(自然科学版), 2015, 40(3):80−85.WANG J N, LIU J W, LI F D, et al. On changes in starch, sugar, acids, VC and proteins contents of jackfruit during ripening process [J]. Journal of Southwest China Normal University (Natural Science Edition), 2015, 40(3): 80−85. (in Chinese) [19] 夏春华, 杨转英, 叶春海, 等. 不同株系菠萝蜜果肉中可溶性糖和有机酸的分析 [J]. 果树学报, 2014, 31(4):648−652.XIA C H, YANG Z Y, YE C H, et al. Analysis of contents and compositions of soluble sugars and organic acids in different jackfruit(Artocarpus heterophyllus) lines [J]. Journal of Fruit Science, 2014, 31(4): 648−652. (in Chinese) [20] 王俊宁, 吕庆芳, 丰锋, 等. 湿包类型菠萝蜜采后呼吸跃变和主要成分的变化 [J]. 园艺学报, 2014, 41(2):329−334. doi: 10.3969/j.issn.0513-353X.2014.02.014WANG J N, LYU Q F, FENG F, et al. Changes in respiration, ethylene and biochemical values of soft jackfruits during the ripening period [J]. Acta Horticulturae Sinica, 2014, 41(2): 329−334. (in Chinese) doi: 10.3969/j.issn.0513-353X.2014.02.014 [21] 王俊宁, 陈文耀, 丰锋, 等. 乙烯利处理对菠萝蜜果实催熟的影响 [J]. 广东农业科学, 2014, 41(3):94−98. doi: 10.3969/j.issn.1004-874X.2014.03.023WANG J N, CHEN W Y, FENG F, et al. Effect of ethephon treatment on physiological index of jackfruit after harvest [J]. Guangdong Agricultural Sciences, 2014, 41(3): 94−98. (in Chinese) doi: 10.3969/j.issn.1004-874X.2014.03.023 [22] 王俊宁, 陈俊鹏, 弓德强, 等. 1-MCP处理对菠萝蜜采后生理效应的影响 [J]. 江西农业大学学报, 2014, 36(1):56−61,96. doi: 10.3969/j.issn.1000-2286.2014.01.009WANG J N, CHEN J P, GONG D Q, et al. Effects of 1-MCP treatment on post-harvest physiology of jackfruit(Artocarpus heterophyllus lam. ) [J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(1): 56−61,96. (in Chinese) doi: 10.3969/j.issn.1000-2286.2014.01.009 [23] GAO Y Y, YAO Y L, CHEN X, et al. Metabolomic and transcriptomic analyses reveal the mechanism of sweet-acidic taste formation during pineapple fruit development [J]. Frontiers in Plant Science, 2022, 13: 971506. doi: 10.3389/fpls.2022.971506 [24] ZHANG X X, WEI X X, ALI M M, et al. Changes in the content of organic acids and expression analysis of citric acid accumulation-related genes during fruit development of yellow (Passiflora edulis f. flavicarpa) and purple (Passiflora edulis f. edulis) passion fruits [J]. International Journal of Molecular Sciences, 2021, 22(11): 5765. doi: 10.3390/ijms22115765 [25] 李雪梅. 砂梨果实有机酸含量及代谢相关酶活性动态变化研究[D]. 武汉: 华中农业大学, 2008.LI X M. Studies on dynamic changes of organic acid contents and metabolizing enzyme activities in sand pear fruit[D]. Wuhan: Huazhong Agricultural University, 2008. (in Chinese) [26] 朱磊, 陈芸华, 胡禧熙, 等. 葡萄有机酸的研究进展 [J]. 中外葡萄与葡萄酒, 2022, (6):88−95.ZHU L, CHEN Y H, HU X X, et al. Research progress of organic acids in grape [J]. Sino-Overseas Grapevine & Wine, 2022(6): 88−95. (in Chinese) [27] 杨滢滢. ‘纽荷尔’脐橙果实柠檬酸合成与降解机理的研究[D]. 南昌: 江西农业大学, 2017.YANG Y Y. Research on synthesis and degradation of citric acid in’Newhall’ navel orange fruit[D]. Nanchang: Jiangxi Agricultural University, 2017. (in Chinese) [28] 张秀梅, 杜丽清, 孙光明, 等. 菠萝果实发育过程中有机酸含量及相关代谢酶活性的变化 [J]. 果树学报, 2007, 24(3):381−384. doi: 10.3969/j.issn.1009-9980.2007.03.025ZHANG X M, DU L Q, SUN G M, et al. Changes in organic acid concentrations and the relative enzyme activities during the development of Cayenne pineapple fruit [J]. Journal of Fruit Science, 2007, 24(3): 381−384. (in Chinese) doi: 10.3969/j.issn.1009-9980.2007.03.025 [29] 文涛, 熊庆娥, 曾伟光, 等. 脐橙果实发育中有机酸合成代谢酶活性变化的研究 [J]. 四川农业大学学报, 2001, 19(1):27−30.WEN T, XIONG Q E, ZENG W G, et al. Study on the change of organic acid synthetase activity during fruit development of navel orange (Citrus sinesis osbeck) [J]. Journal of Sichuan Agricultural University, 2001, 19(1): 27−30. (in Chinese) [30] 张沛宇. 采后乙烯利脱绿对柠檬果实色泽、风味及抗氧化能力的影响研究[D]. 重庆: 西南大学, 2019.ZHANG P Y. Effects of postharvest ethephon degreening on the color, flavor quality and antioxidant capacity of lemon (Citrus limon (L. ) burm. f. ) fruit[D]. Chongqing: Southwest University, 2019. (in Chinese) [31] LIM S, LEE J G, LEE E J. Comparison of fruit quality and GC-MS-based metabolite profiling of kiwifruit 'Jecy green': Natural and exogenous ethylene-induced ripening [J]. Food Chemistry, 2017, 234: 81−92. doi: 10.1016/j.foodchem.2017.04.163 [32] 郭香凤, 向进乐, 史国安, 等. 1-MCP对凯特杏果实采后糖酸组分与含量的影响 [J]. 保鲜与加工, 2008, 8(5):30−33.GUO X F, XIANG J Y, SHI G A, et al. Effects of 1-methylcydopropene on sugar and organic acid constituents in katy apricot [J]. Storage and Process, 2008, 8(5): 30−33. (in Chinese) [33] 弓德强, 李敏, 高兆银, 等. 1-甲基环丙烯处理对樱桃番茄果实低温贮藏品质的影响 [J]. 食品与发酵工业, 2022, 48(4):116−122,129.GONG D Q, LI M, GAO Z Y, et al. Effect of 1-methylcyclopropene treatment on quality of cherry tomatoes stored at low temperature [J]. Food and Fermentation Industries, 2022, 48(4): 116−122,129. (in Chinese) [34] 石岩. 小金海棠柠檬酸合成酶基因MxCS2的克隆与功能分析[D]. 哈尔滨: 东北农业大学, 2016.SHI Y. Cloning and functional analysis of Malus xiaojinensis citrate synthase gene MxCS2[D]. Harbin: Northeast Agricultural University, 2016. (in Chinese) [35] 张小红. 琯溪蜜柚(Citrus grandis(L. )osbeck. cv. guanxi Miyou)果实采后酸代谢研究[D]. 福州: 福建农林大学, 2005.ZHANG X H. Studies on the metabolism of organic acids in Citrus guanxi-miyou (Citrus grandis (L. ) osbeck. cv. guanxi Miyou) fruit after harvest[D]. Fuzhou: Fujian Agriculture and Forestry University, 2005. (in Chinese) [36] 张春梅. 枣糖酸代谢及其驯化的分子机制研究[D]. 杨凌: 西北农林科技大学, 2016.ZHANG C M. Molecular mechanism related to the metabolism of sugar, acid and domestication for Ziziphus jujuba mill[D]. Yangling: Northwest A & F University, 2016. (in Chinese) [37] ZHANG G F, XIE S X. Influence of water stress on the citric acid metabolism related gene expression in the ponkan fruits [J]. Agricultural Sciences, 2014, 5(14): 1513−1521. doi: 10.4236/as.2014.514162 [38] 文涛, 熊庆娥, 曾伟光, 等. 脐橙果实发育过程中有机酸合成代谢酶活性的变化 [J]. 园艺学报, 2001, 28(2):161−163. doi: 10.3321/j.issn:0513-353X.2001.02.015WEN T, XIONG Q E, ZENG W G, et al. Changes of organic acid synthetase activity during fruit development of navel orange(Citrus sinesis osbeck) [J]. Acta Horticulturae Sinica, 2001, 28(2): 161−163. (in Chinese) doi: 10.3321/j.issn:0513-353X.2001.02.015 [39] 李航. 两种中国樱桃果实糖酸积累和代谢相关酶及其基因表达的研究[D]. 雅安: 四川农业大学, 2019.LI H. Study on sugar and acid accumulation, metabolism enzymes activities and gene expression of two Chinese cherry fruits[D]. Yaan: Sichuan Agricultural University, 2019. (in Chinese) [40] 翁金洋. 梅和杏果实糖酸变化规律及有机酸代谢差异研究[D]. 南京: 南京农业大学, 2017.WENG J Y. Studies on the change regulation of sugar and acid and the metabolism of organic acids in Prunus mume and apricot fruits[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese) [41] 王羊, 邓倩, 邓群仙, 等. “蜀脆枣” 果实发育过程中糖酸代谢相关基因表达分析 [J]. 西北农业学报, 2022, 31(7):876−885. doi: 10.7606/j.issn.1004-1389.2022.07.009WANG Y, DENG Q, DENG Q X, et al. Analysis of sugar and organic acid metabolism-related genes expression during development of Ziziphus jujuba cv. “Shucuizao” fruits [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(7): 876−885. (in Chinese) doi: 10.7606/j.issn.1004-1389.2022.07.009 [42] LIU J H, CHI G H, JIA C H, et al. Function of a citrate synthase gene (MaGCS) during postharvest banana fruit ripening [J]. Postharvest Biology and Technology, 2013, 84: 43−50. doi: 10.1016/j.postharvbio.2013.04.005