Host Selection of Ectomycorrhizal Fungi at Pinus massoniana and Castanopsis carlesii Forests
-
摘要:
目的 探究森林土壤中外生菌根真菌(Ectomycorrhizal fungi, ECMF)对宿主的选择性。 方法 采用不同的土壤菌源(马尾松土壤Pinus massoniana soil, PmS和米槠土壤Castanopsis carlesii soil, CcS),分别对马尾松(Pinus massoniana, Pm)和鳞苞锥(Castanopsis uraiana, Cu)进行接种试验(Pm-PmS、Pm-CcS、Cu-PmS、Cu-CcS)。培育6个月后,采用ITS进行菌根鉴定,检测并计算不同土壤菌源下马尾松和鳞苞锥根中ECM出现的频率、侵染率、相对丰度、相对频率、丰富度和多样性,并测定苗木生长指标以及土壤理化性质。 结果 米槠土壤pH值、全磷含量、全碳含量、有效磷含量显著高于马尾松土壤,且接种苗木后幼苗的地上干重和根长均显著高于马尾松土壤。两种土壤中共检测到19个OTUs的ECMF,分别属于7科和10属,Cenococum geophilum、Rhizopogon boninensis和Tomentella sp.2为两种土壤共有。马尾松林下土壤鉴定到的13种ECMF中,能侵染马尾松的有8种,能侵染鳞苞锥的有6种。米槠林下土壤鉴定到的9种ECMF中,能侵染马尾松的有4种,能侵染鳞苞锥的有7种。C. geophilum和Sebacina sp.2均能与马尾松和鳞苞锥建立共生关系;而Hyaloscyphaceae sp.、Lactarius inconspicuous、Rh. boninensis、Rh. flavidus、Tomentella sp.1、Tomentella sp.3和Tomentellopsis submollis只侵染马尾松;Athelia sp.、Amanita sp.、L. atrofuscus、Russula minor、Russula sp.、Sebacina sp.1、Thelephora sp.1、Thelephora sp.2和Tomentella sp.4只侵染鳞苞锥。马尾松土壤的ECMF丰富度指数(IV)、Shannon多样性指数(H´)、Simpson优势度指数(D)高于米槠土壤;但马尾松土壤接种不同宿主植物后的Sorensen相似性指数(0.14)低于米槠土壤(0.36)。部分ECMF的侵染率与寄主的生理生态指标密切相关。 结论 ECM是经过长期与树种共同进化而建立的共生关系,因此马尾松土壤中的ECMF更倾向于侵染马尾松,而米槠土壤的ECMF更倾向于侵染同为壳斗科的鳞苞锥;马尾松林下土壤的ECMF相对于米槠土壤,对寄主植物选择性的更强。虽然土壤理化性质在一定程度上影响了侵染率,但是ECMF的定殖主要受宿主植物的影响。 Abstract:Objective Host selection of ectomycorrhizal fungi (ECMF) in forest soil was studied. Method In the soils at forests of Pinus massoniana (Pm) and Castanopsis carlesii (Cc), various fungi were inoculated into Pm or Castanopsis uraiana (Cu) and designated as treatments of Pm-PmS, Pm-CcS, Cu-PmS, and Cu-CcS. After cultivating the inoculated seedlings for 6 months, mycorrhizal identification on the fungi was performed by ITS. The frequency, infection rate, relative abundance, relative frequency, richness, and diversity of ECMF in the roots of Pm and Cu plants were monitored or calculated. Seedling growth indexes and soil physiochemical properties were determined. Result The Cc forest soil (CcS) showed significantly higher pH and contents of total phosphorus, total carbon, and available phosphorus as well as the seedling shoot dry weight and root length than the Pm counterpart (PmS). The 19 OTUs of ECMF detected in these soil samples belonged to 7 families and 10 genera. Of which, Cenococum geophilum, Rhizopogon boninensis, and Tomentella sp. 2 were commonly found on the two soils. Out of the 13 ECMF identified in PmS, 8 infected Pm and 6, Cu; while among the 9 ECMF identified in CcS, 4 infected Pm and 7, Cu. Both C. geophilum and Sebacina sp. 2 were symbiotic with Pm and Cu. Hyaloscyphaceae sp., Lactarius inconspicuous, Rh. boninensis, Rh. flavidus, Tomentella sp. 1, Tomentella sp. 3 and Tomentellopsis submollis infected Pm, whereas Athelia sp., Amanita sp., L. atrofuscus, Russula minor, Russula sp., Sebacina sp.1, Thelephora sp. 1, Thelephora sp. 2 and Tomentella sp. 4 infected only Cu. The ECMF richness index (IV), Shannon index (H') and Simpson index (D) of PmS were higher than those of CcS. However, the Sorensen index on the PmS planted with host plants other than Pm was 0.14, which was lower than 0.36 on the CcS planted not with Cc. The infection rates of some ECMF were closely related to the physiological and ecological properties of the host. Conclusion The symbiosis between ECMF and trees has evolved in a long process. The ECMF in the soil at a Pm forest tended to infect Pm specifically, and so did those at a Cc forest to Cc, Cu or Fagaceae plants. However, the ECMF in PmS were more selective on their host plants than those in CcS. Even though soil physiochemical properties also affected the ECMF infection, the species of host plant largely determined the fungal colonization on the land. -
表 1 苗木接种前后土壤理化性质
Table 1. Soil physicochemical property before and after seedling inoculation
时期
Period处理
TreatmentpH值
pH value全磷
TP/(g·kg−1)全钾
TK/(g·kg−1)有效磷
AP/ (mg·kg−1)有效钾
AK/ (mg·kg−1)全碳
TC/(g·kg−1)全氮
TN/(g·kg−1)移植前
PretransplantCcS 4.82±0.02a 0.85±0.03a 14.63±0.30a 32.67±0.65a 8.46±0.61a 22.37±0.47a 2.18±0.10a PmS 4.67±0.02b 0.54±0.05b 12.73±0.31a 15.38±0.71b 6.60±0.22a 17.74±0.05b 2.20±0.02a Pm移植后
After Pm transplantationCcS 4.80±0.01a 0.82±0.01a 14.63±0.12a 33.78±0.32a 8.52±0.12a 21.83±0.16a 2.12±0.02a PmS 4.61±0.01b 0.52±0.01b 12.45±0.19a 15.17±0.04b 6.06±0.10a 17.62±0.02b 2.20±0.03a Cu移植后
After Cu transplantationCcS 4.80±0.04a 0.82±0.01a 14.41±0.17a 33.86±0.29a 8.45±0.13a 22.01±0.24a 2.18±0.03a PmS 4.64±0.01b 0.52±0.01b 12.16±0.09a 15.75±0.11b 6.81±0.15a 17.61±0.02b 2.13±0.02a Pm代表马尾松;Cu代表鳞苞锥;CcS代表米槠土壤;PmS代表马尾松土壤;不同小写字母表示独立样本t检验显著性差异(P<0.05)。下同。
Pm: P. massoniana; Cu: C. uraiana; CcS: C. carlesii forest soil; PmS: Pm forest soil. Data with different lowercase letters indicate significant difference in Student’s t-test (P<0.05). Same for all Tables and Figs.表 2 不同森林土壤处理的马尾松和鳞苞锥的生长指标
Table 2. Growth indexes of Pm and Cc under various soil treatments
处理
Treatment地上干重
Shoot dry weight/g根干重
Root dry weight/g根长
Root length/cm根表面积
Root surface area/cm2根体积
Root volume/cm3根尖数
Root tips/个Pm-PmS 0.20±0.02b 0.12±0.02a 17.95±2.00b 19.20±3.24b 0.32±0.06a 380±49.1b Pm-CcS 0.62±0.05a 0.14±0.01a 36.50±2.27a 33.60±2.72a 0.38±0.03a 570±37.9a Cu-PmS 0.36±0.03b 0.34±0.02a 18.40±1.10b 53.70±3.60a 0.41±0.04a 2399±152.0a Cu-CcS 0.58±0.04a 0.41±0.03a 33.20±1.60a 55.50±3.45a 0.45±0.03a 2755±201.0a Pm-PmS代表马尾松种植在马尾松土壤;Pm-CcS代表尾松种植在米槠土壤;Cu-PmS代表鳞苞锥种植在马尾松土壤;Cu-CcS代表鳞苞锥种植在米槠土壤。下同。
Pm-PmS: Pm planted in PmS; Pm-CcS: Pm planted in CcS; Cu-PmS: Cu planted in PmS; Cu-CcS: Cu planted in CcS. Same for all Tables and Figs.表 3 马尾松和米槠林外生菌根真菌OTUs的鉴定
Table 3. ECMF OTUs in PmS and CcS
序号
No.OTUs 属名
GenusNCBI对比号
NCBI comparison
number序列长度/bp(相似度/%)
Sequence length/bp
(similarity/%)相对丰度(%)/相对频率(%)
Ra(%)/Rf(%)Pm-PmS
(n=10)Cu-PmS
(n=15)Pm-CcS
(n=10)Cu-CcS
(n=15)1 Athelia sp. 阿太菌属
AtheliaAB831863 570/585 (97%) — 1.99/9.09 — — 2 Amanita sp. 鹅膏属
AmanitaOK586725 525/578 (91%) — — — 5.55/3.13 3 Cenococcum geophilum 空团菌属
CenococcumKC967408 448/449 (99%) 1.25/20.69 12.50/42.42 4.53/22.99 22.83/46.88 4 Hyaloscyphaceae sp. — MT522555 476/481 (99%) 0.46/3.45 — — — 5 Lactarius inconspicuous 乳菇属
LactariusKF433004 601/645 (93%) — — 27.35/26.44 — 6 Lactarius atrofuscus MK351919 618/635 (97%) — — — 0.26/1.56 7 Rhizopogon boninensis 须腹菌属
RhizopogonMK395368 629/633 (99%) 31.78/37.93 — 9.49/18.39 — 8 Rhizopogon flavidus KP893815 745/746 (99%) 7.82/3.45 — — — 9 Russula minor 红菇属
RussulaNR_174896 593/593 (100%) — — — 5.38/1.56 10 Russula sp. MT522574 604/607 (99%) — 7.80/9.09 — — 11 Sebacina sp.1 蜡耳壳属
SebacinaLC553305 507/542 (94%) — 7.44/6.06 — — 12 Sebacina sp.2 LC553304 531/537 (99%) — — 58.63/32.18 63.42/40.63 13 Thelephora sp.1 革菌属
ThelephoraKM576617 558/593 (94%) — 41.88/15.15 — — 14 Thelephora sp.2 HE814236 372/379 (98%) — — — 0.14/3.13 15 Tomentella sp.1 棉隔菌属
TomentellaAB848650 572/578 (99%) 37.89/17.24 — — — 16 Tomentella sp.2 HE814192 533/538 (99%) 3.61/6.90 — — 2.42/3.13 17 Tomentella sp.3 MT678909 581/583 (99%) 16.00/3.45 — — — 18 Tomentella sp.4 JF273546 572/575 (99%) — 28.40/18.18 — — 19 Tomentellopsis submollis Tomentellopsis JQ711898 609/639 (95%) 1.19/6.90 — — — “—”表示未被鉴定到。下同。
“—” means not identified. Same for below.表 4 马尾松和米槠林下土壤中外生菌根真菌OTUs分类统计
Table 4. OTU classification of ECMF in PmS and CcS
门
Phylum纲
Class目
Order科
Family属
GenusOTUs PmS CcS 担子菌门 Basidiomycota 伞菌纲 Agaricomycetes Boleales 须腹菌科 Rhizopogonaceae 须腹菌属 Rhizopogon 2 1 革菌目 Thelephorales 革菌科 Thelephoraceae 棉隔菌属 Tomentella 4 1 Tomentellopsis 1 0 革菌属 Thelephora 1 1 蜡耳壳目 Sebacinales 蜡耳壳科 Sebacinaceae 蜡耳壳属 Sebacina 1 1 红菇目 Russulales 红菇科 Russulaceae 乳菇属 Lactarius 0 2 红菇属 Russula 1 1 阿太菌目 Atheliales 阿太菌科 Atheliaceae 阿太菌属 Athelia 1 0 伞菌目 Agaricales 鹅膏菌科 Amanitaceae 鹅膏属 Amanita 0 1 子囊菌门 Ascomycota 锤舌菌纲 Leotiomyceces 蜡钉菌目 Helotiales Hyalodyphaceae — 1 0 座囊菌纲 Dothideomycetes 贝壳菌目 Mytilinidiales 船壳菌科 Gloniaceae 空团菌属 Cenococcum 1 1 表 5 马尾松和米槠林下土壤处理不同宿主外生菌根真菌OTUs丰富度和多样性指数
Table 5. OTU richness and diversity of ECMF in PmS and CcS of different host plants
处理
TreatmentECMF丰富度
ECMF richness多样性指数
Shannon index优势度指数
Sinpson indexPm-PmS 13 1.72 0.77 Cu-PmS 1.60 0.77 Pm-CcS 9 1.26 0.68 Cu-CcS 1.17 0.60 表 6 马尾松和米槠林下土壤处理不同宿主中共有外生菌根真菌类群数量(上三角)和Sorensen指数(下三角)
Table 6. Number of common ECMF groups (upper triangle) and Sorensen index (lower triangle) in PmS and CcS of different host plants
处理
TreatmentPm-PmS Cu-PmS Pm-CcS Cu-CcS Pm-PmS – 1 2 2 Cu-PmS 0.14 – 1 1 Pm-CcS 0.33 0.20 – 2 Cu-CcS 0.27 0.15 0.36 – 表 7 马尾松林下土壤侵染马尾松和鳞苞锥幼苗的外生菌根真菌组成分析
Table 7. ECMF in PmS of infected Pm and Cu seedlings
OTUs 属名
Genus检测频率
Detection frequency/%侵染率
Infection rate/%Pm(n=10) Cu(n=15) Pm(n=10) Cu(n=15) Cenococcum geophilum 空团菌属 Cenococcum 37.5 46.7 4.0 6.1 Tomentella sp.1 棉隔菌属 Tomentella 31.3 — 67.8 — Tomentella sp.2 12.5 — 41.5 — Tomentella sp.3 6.3 — 87.0 — Tomentella sp.4 — 20.0 — 30.0 Rhizopogon boninensis 须腹菌属 Rhizopogon 68.8 — 44.5 — Rhizopogon flavidus 6.3 — 38.0 — Tomentellopsis submollis Tomentellopsis 6.3 — 4.0 — Hyaloscyphaceae sp. — 6.3 — 4.0 — Thelephora sp.1 革菌属 Thelephora — 16.7 — 48.1 Sebacina sp.1 蜡耳壳属 Sebacina — 6.7 — 31.8 Athelia sp. 阿太菌属 Athelia — 10.0 — 5.4 Russula sp. 红菇属 Russula — 10.0 — 16.9 表 8 米槠林下土壤侵染马尾松和鳞苞锥幼苗的外生菌根真菌组成分析
Table 8. ECMF in CcS of infected Pm and Cu seedlings
属名
GenusOTUs 检测频率
Detection frequency/%侵染率
Infection rate/%Pm(n=10) Cu(n=15) Pm(n=10) Cu(n=15) 空团菌属 Cenococcum Cenococcum geophilum 66.7 100.0 8.2 10.1 蜡耳壳属 Sebacina Sebacina sp.2 93.3 86.7 54.9 31.4 乳菇属 Lactarius Lactarius inconspicuous 76.7 — 32.2 — Lactarius atrofuscus — 3.3 — 1.0 须腹菌属 Rhizopogon Rhizopogon boninensis 50.0 — 18.1 — 革菌属 Thelephora Thelephora sp.2 — 6.7 — 1.0 棉隔菌属 Tomentella Tomentella sp.2 — 6.7 — 21.5 鹅膏属 Amanita Amanita sp. — 6.7 — 44.5 红菇属 Russula Russula minor — 3.3 — 65.4 表 9 外生菌根真菌侵染率与土壤理化性质的相关性分析
Table 9. Correlation between ECMF infection rate and soil physiochemical properties
处理
TreatmentOTUs pH值
pH value全磷
TP全钾
TK有效磷
AP有效钾
AK全碳
TC全氮
TNPm-PmS Cenococcum geophilum 0.622 0.456 −0.388 0.509 0.018 0.275 −0.469 Rhizopogon boninensis −0.314 −0.215 0.166 −0.072 0.138 −0.231 −0.435 Pm-Ccs Cenococcum geophilum 0.284 −0.079 −0.125 −0.189 −0.180 0.050 0.330 Rhizopogon boninensis −0.127 −0.029 0.206 0.086 −0.089 0.199 0.077 Sebacina sp.2 −0.022 −0.094 0.118 −0.090 0.233 0.089 −0.136 Lactarius inconspicuous −0.190 0.177 −0.209 0.271 −0.256 −0.023 0.116 Cu-PmS Cenococcum geophilum −0.074 −0.023 −0.557* 0.378 0.165 0.379 −0.319 Cu-Ccs Cenococcum geophilum 0.047 0.106 −0.027 0.074 −0.088 0.004 0.234 Sebacina sp.2 0.455* −0.121 0.074 −0.134 0.077 0.154 0.232 *表示相关在P<0.05水平显著。
* indicates significant correlation at P<0.05.表 10 外生菌根真菌侵染率与苗木生长量的相关性分析
Table 10. Correlation between ECMF infection rate and seedling biomass
处理
TreatmentOTUs 地上干重
Shoot dry weight根干重
Root dry weight根长
Root length根表面积
Root surface area根体积
Root volume根尖数
Root tipsPm-PmS Cenococcum geophilum −0.099 −0.095 −0.199 −0.065 −0.150 0.150 Rhizopogon boninensis −0.068 0.006 0.028 −0.053 0.037 0.020 Pm-Ccs Cenococcum geophilum −0.321 −0.325 −0.137 −0.337 −0.367 −0.304 Rhizopogon boninensis 0.098 −0.088 −0.12 −0.015 −0.026 −0.102 Sebacina sp.2 −0.149 −0.027 −0.324 −0.043 −0.020 0.117 Lactarius inconspicuous 0.088 −0.038 0.350 0.003 0.045 −0.139 Cu-PmS Cenococcum geophilum −0.687** −0.229 −0.370 −0.226 −0.200 −0.045 Cu-Ccs Cenococcum geophilum 0.056 −0.047 −0.074 −0.020 0.064 −0.079 Sebacina sp.2 0.192 0.004 −0.275 0.152 0.253 −0.220 **表示相关在P<0.01水平显著。
** indicates significant correlation at P<0.01. -
[1] 斯钦毕力格, 赵敏, 白淑兰. 外生菌根研究进展 [J]. 分子植物育种, 2017, 15(2):757−762.SI Q, ZHAO M, BAI S L. Research progress of ectomycorrhiza [J]. Molecular Plant Breeding, 2017, 15(2): 757−762.(in Chinese) [2] 苏红飞, 万杰, 伍建榕, 等. 云南松菌根菌的分离培养条件筛选 [J]. 林业调查规划, 2008, 33(2):135−138. doi: 10.3969/j.issn.1671-3168.2008.02.036SU H F, WAN J, WU J R, et al. Culture Conditions’Selection for the separation of the mycorrhizal fungi of Pinus yunnanensis [J]. Forest Inventory and Planning, 2008, 33(2): 135−138.(in Chinese) doi: 10.3969/j.issn.1671-3168.2008.02.036 [3] 张亮, 王明霞, 张薇, 等. 外生菌根真菌对土壤钾的活化作用 [J]. 微生物学报, 2014, 54(7):786−792.ZHANG L, WANG M X, ZHANG W, et al. Mobilization of potassium from soil by ectomycorrhizal fungi [J]. Acta Microbiologica Sinica, 2014, 54(7): 786−792.(in Chinese) [4] 佟丽华, 张红光, 姚鑫. 外生菌根真菌的作用与应用开发前景展望 [J]. 安徽农学通报, 2008, 14(14):86−89. doi: 10.3969/j.issn.1007-7731.2008.14.048TONG L H, ZHANG H G, YAO X. Prospects of exploitation and utilization of ecto-mycorrhiza [J]. Anhui Agricultural Science Bulletin, 2008, 14(14): 86−89.(in Chinese) doi: 10.3969/j.issn.1007-7731.2008.14.048 [5] LIU Y J, LI X Z, KOU Y P. Ectomycorrhizal fungi: Participation in nutrient turnover and community assembly pattern in forest ecosystems [J]. Forests, 2020, 11(4): 453. doi: 10.3390/f11040453 [6] STEIDINGER B S, CROWTHER T W, LIANG J, et al. Author Correction: Climatic controls of decomposition drive the global biogeography of forest-tree symbioses [J]. Nature, 2019, 571: E8. doi: 10.1038/s41586-019-1342-9 [7] GENRE A, LANFRANCO L, PEROTTO S, et al. Unique and common traits in mycorrhizal symbioses [J]. Nature Reviews Microbiology, 2020, 18: 649−660. doi: 10.1038/s41579-020-0402-3 [8] HIBBETT D S, GILBERT L B, DONOGHUE M J. Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes [J]. Nature, 2000, 407: 506−508. doi: 10.1038/35035065 [9] FLOUDAS D, BINDER M, RILEY R, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes [J]. Science, 2012, 336(6089): 1715−1719. doi: 10.1126/science.1221748 [10] PELLITIER P T, ZAK D R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: Why evolutionary history matters [J]. The New Phytologist, 2018, 217(1): 68−73. doi: 10.1111/nph.14598 [11] 俞嘉瑞, 袁海生. 外生菌根真菌的共生互作和宿主选择机制研究进展 [J]. 菌物学报, 2023, 42(1):86−100.YU J R, YUAN H S. Research progress on symbiotic interaction and host selection mechanisms of ectomycorrhizal fungi [J]. Mycosystema, 2023, 42(1): 86−100.(in Chinese) [12] RIGAMONTE T A, PYLRO V S, DUARTE G F. The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations [J]. Brazilian Journal of Microbiology, 2010, 41(4): 832−840. doi: 10.1590/S1517-83822010000400002 [13] VAN DER LINDE S, SUZ L M, ORME C D L, et al. Environment and host as large-scale controls of ectomycorrhizal fungi [J]. Nature, 2018, 558: 243−248. doi: 10.1038/s41586-018-0189-9 [14] 卢丽君, 白淑兰, 王静, 等. 外生菌根合成的条件及形成机制 [J]. 微生物学杂志, 2005, 25(2):84−87. doi: 10.3969/j.issn.1005-7021.2005.02.020LU L J, BAI S L, WANG J, et al. Synthesis conditions of ectomycorrhiza and its formation mechanism [J]. Journal of Microbiology, 2005, 25(2): 84−87.(in Chinese) doi: 10.3969/j.issn.1005-7021.2005.02.020 [15] DICKIE I A. Host preference, niches and fungal diversity [J]. New Phytologist, 2007, 174(2): 230−233. doi: 10.1111/j.1469-8137.2007.02055.x [16] 孟繁荣, 邵景文. 东北主要林区针叶林下外生菌根真菌及生态分布 [J]. 菌物系统, 2001, 20(3):413−419.MENG F R, SHAO J W. The ecological distribution of ecto-mycorrhizal fungi in main coniferous forests in Northeast China [J]. Mycosystema, 2001, 20(3): 413−419.(in Chinese) [17] PALMER J M, LINDNER D L, VOLK T J. Ectomycorrhizal characterization of an American chestnut (Castanea dentata)-dominated community in Western Wisconsin [J]. Mycorrhiza, 2008, 19(1): 27−36. doi: 10.1007/s00572-008-0200-7 [18] 康文斯. 川东地区四种马尾松林分类型外生菌根真菌群落多样性的研究[D]. 雅安: 四川农业大学, 2020.KANG W S. Diversity of ectomycorrhizal fungal communities in four types of Pinus massoniana stands in eastern sichuan[D]. Yaan: Sichuan Agricultural University, 2020. (in Chinese) [19] TEDERSOO L, MAY T W, SMITH M E. Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages [J]. Mycorrhiza, 2010, 20(4): 217−263. doi: 10.1007/s00572-009-0274-x [20] 耿荣, 耿增超, 黄建, 等. 秦岭辛家山林区锐齿栎外生菌根真菌多样性 [J]. 菌物学报, 2016, 35(7):833−847.GENG R, GENG Z C, HUANG J, et al. Diversity of ectomycorrhizal fungi associated with Quercus aliena in Xinjiashan forest region of Qinling Mountains [J]. Mycosystema, 2016, 35(7): 833−847.(in Chinese) [21] NAGAIKE T, HAYASHI A, KUBO M, et al. Changes in plant species diversity over 5 years in Larix kaempferi plantations and abandoned coppice forests in central Japan [J]. Forest Ecology and Management, 2006, 236(2/3): 278−285. [22] HUANG J, HAN Q S, LI J J. Soil propagule bank of ectomycorrhizal fungi associated with Masson pine (Pinus massoniana) grown in a manganese mine wasteland [J]. PLoS One, 2018, 13(6): e0198628. doi: 10.1371/journal.pone.0198628 [23] 成斌斌. 土壤pH的测定 [J]. 化学教与学, 2014(4):95−97. doi: 10.3969/j.issn.1008-0546.2014.04.035CHENG B B. Determination of soil pH [J]. Chemistry Teaching and Learning, 2014(4): 95−97.(in Chinese) doi: 10.3969/j.issn.1008-0546.2014.04.035 [24] 胡慧蓉, 王艳霞. 土壤学实验指导教程[M]. 2版. 北京: 中国林业出版社, 2020.HU H R, WANG Y X. Experimental tutorial of soil science[M]. 2nd ed. Beijing: China Forestry Publishing House, 2020. (in Chinese) [25] MARTIN F, KOHLER A, MURAT C, et al. Unearthing the roots of ectomycorrhizal symbioses [J]. Nature Reviews Microbiology, 2016, 14: 760−773. doi: 10.1038/nrmicro.2016.149 [26] PENA R, POLLE A. Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress [J]. The ISME Journal, 2014, 8(2): 321−330. doi: 10.1038/ismej.2013.158 [27] KAISER C, KORANDA M, KITZLER B, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil [J]. New Phytologist, 187(3): 843-858. [28] TEDERSOO L, JAIRUS T, HORTON B M, et al. Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers [J]. The New Phytologist, 2008, 180(2): 479−490. doi: 10.1111/j.1469-8137.2008.02561.x [29] WU B Y, NIOH I. Some characteristics of bacteria isolated from the ectomycorrhiza of Chinese pine inoculated with Cenococcum graniforme [J]. Microbes and Environments, 1998, 13(1): 17−21. doi: 10.1264/jsme2.13.17 [30] MIKOLA P. On the physiology and ecology of Cenococcum graniforme [J]. Forest, 1948, 36(3): 1−104. [31] 乌仁陶格斯, 韩胜利, 闫伟. 浅析土生空团菌自然侵染率与植被、根际土壤因子的关系 [J]. 中国农学通报, 2012, 28(25):47−51.WU R, HAN S L, YAN W. The relationship between natural infection rate of Cenococcum geophilum and vegetation, rhizosphere soil factors [J]. Chinese Agricultural Science Bulletin, 2012, 28(25): 47−51.(in Chinese) [32] 郭子轩, 王永龙, 武彬蔚, 等. 外生菌根真菌土生空团菌种群遗传多样性与结构研究 [J]. 菌物学报, 2021, 40(4):920−935.GUO Z X, WANG Y L, WU B W, et al. Population genetic diversity and structure of ectomycorrhizal fungus Cenococcum geophilum [J]. Mycosystema, 2021, 40(4): 920−935.(in Chinese) [33] MATSUDA Y, YAMAKAWA M, INABA T, et al. Intraspecific variation in mycelial growth of Cenococcum geophilum isolates in response to salinity gradients [J]. Mycoscience, 2017, 58(5): 369−377. doi: 10.1016/j.myc.2017.04.009 [34] JANY J L, MARTIN F, GARBAYE J. Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius sp. in relation to soil water potential in five beech forests [J]. Plant and Soil, 2003, 255(2): 487−494. doi: 10.1023/A:1026092714340 [35] CASIERI L, AIT LAHMIDI N, DOIDY J, et al. Biotrophic transportome in mutualistic plant–fungal interactions [J]. Mycorrhiza, 2013, 23(8): 597−625. doi: 10.1007/s00572-013-0496-9 [36] RUSCA T A, KENNEDY P G, BRUNS T D. The effect of different pine hosts on the sampling of Rhizopogon spore banks in five Eastern Sierra Nevada forests [J]. The New Phytologist, 2006, 170(3): 551−560. doi: 10.1111/j.1469-8137.2006.01689.x [37] BEILER K J, DURALL D M, SIMARD S W, et al. Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts [J]. The New Phytologist, 2010, 185(2): 543−553.[PubMed doi: 10.1111/j.1469-8137.2009.03069.x [38] 秦岭, 徐践, 马萱, 等. 板栗共生菌根真菌种类及其发生规律的研究 [J]. 北京农学院学报, 1995, 10(1):71−76.QIN L, XU J, MA X, et al. Research on Symbiotical Fungi Species and EctomycorrhizaeOccurrence of Chestnut (Castanea mollissima BL. ) [J]. Journal of Beijing Agricultural College, 1995, 10(1): 71−76.(in Chinese) [39] 黄秋晨, 梁香娜, 张颖. 外生菌根菌: 干巴菌的研究进展 [J]. 中国食用菌, 2022, 41(10):14−17,25.HUANG Q C, LIANG X N, ZHANG Y. Research progress of the ectomycorrhizal fungus Thelephora ganbajun [J]. Edible Fungi of China, 2022, 41(10): 14−17,25.(in Chinese) [40] 魏江春. 菌物多样性、系统性及其对人类发展的意义 [J]. 生物多样性, 1993, 1(1):23−25.WEI J C. Biological diversity and systematicainess of panomycetes, and their significance to the development of human beings [J]. Chinese Biodiversity, 1993, 1(1): 23−25.(in Chinese) [41] TEDERSOO L, SADAM A, ZAMBRANO M, et al. Low diversity and high host preference of ectomycorrhizal fungi in western Amazonia, a neotropical biodiversity hotspot [J]. The ISME Journal, 2010, 4(4): 465−471. doi: 10.1038/ismej.2009.131 [42] DING Q, LIANG Y, LEGENDRE P, et al. Diversity and composition of ectomycorrhizal community on seedling roots: The role of host preference and soil origin [J]. Mycorrhiza, 2011, 21(8): 669−680. doi: 10.1007/s00572-011-0374-2 [43] GARCIA K, DELAUX P M, COPE K R, et al. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses [J]. The New Phytologist, 2015, 208(1): 79−87. doi: 10.1111/nph.13423 [44] 李娇, 蒋先敏, 尹华军, 等. 不同林龄云杉人工林的根系分泌物与土壤微生物 [J]. 应用生态学报, 2014, 25(2):325−332.LI J, JIANG X M, YIN H J, et al. Root exudates and soil microbes in three Picea asperata plantations with different stand ages [J]. Chinese Journal of Applied Ecology, 2014, 25(2): 325−332.(in Chinese) [45] SMIT E, VEENMAN C, BAAR J. Molecular analysis of ectomycorrhizal basidiomycete communities in a Pinus sylvestris L. stand reveals long-term increased diversity after removal of litter and humus layers [J]. FEMS Microbiology Ecology, 2003, 45(1): 49−57. doi: 10.1016/S0168-6496(03)00109-0 [46] 周慧杰. 培养液pH对外生菌根真菌生长影响分析 [J]. 中国食用菌, 2019, 38(8):42−44.ZHOU H J. Analysis of the effect of culture pH of medium on the growth of ectomycorrhizal fungi [J]. Edible Fungi of China, 2019, 38(8): 42−44.(in Chinese) [47] 许美玲, 朱教君, 孙军德, 等. 树木外生菌根菌与环境因子关系研究进展 [J]. 生态学杂志, 2004, 23(5):212−217. doi: 10.3321/j.issn:1000-4890.2004.05.038XU M L, ZHU J J, SUN J D, et al. A review on the relationships between forest Ectomycorrhizal fungi and environmental factors [J]. Chinese Journal of Ecology, 2004, 23(5): 212−217.(in Chinese) doi: 10.3321/j.issn:1000-4890.2004.05.038 [48] 韩桂云, 齐玉臣, 刘忱, 等. 温度、pH对菌根真菌生长影响的研究 [J]. 生态学杂志, 1993, 12(1):15−19. doi: 10.3321/j.issn:1000-4890.1993.01.007HAN G Y, QI Y C, LIU C, et al. Effects of Temperature and pH on Mycorrhizal Fungus Growth [J]. Chiniese Journal of Ecology, 1993, 12(1): 15−19.(in Chinese) doi: 10.3321/j.issn:1000-4890.1993.01.007 [49] 蔡万宣. 马尾松育苗造林管理 [J]. 特种经济动植物, 2018, 21(6):31−32. doi: 10.3969/j.issn.1001-4713.2018.06.016CAI W X. Management of Pinus massoniana seedling and afforestation [J]. Special Economic Animal and Plant, 2018, 21(6): 31−32.(in Chinese) doi: 10.3969/j.issn.1001-4713.2018.06.016 [50] 张伟军, 陈灼华. 优良乡土树种米槠营养杯育苗技术 [J]. 现代农业科技, 2011(14):231. doi: 10.3969/j.issn.1007-5739.2011.14.172ZHANG W J, CHEN Z H. Seedling raising techniques of Castanopsis carlesii, an excellent native tree species, in nutrient cups [J]. Modern Agricultural Sciences and Technology, 2011(14): 231.(in Chinese) doi: 10.3969/j.issn.1007-5739.2011.14.172