Formulation of Antrodia camphorata Culture Medium Incorporated with Pseudostellaria heterophylla By-product
-
摘要:
目的 有效利用太子参根须副产物资源,提高樟芝(Antrodia camphorata)菌丝产量,促进活性成分合成。 方法 以太子参根须(粉末)作为培养基组分,Plackett-Burman试验筛选影响樟芝菌丝生长的关键成分,正交试验优化培养基组成。 结果 筛选试验结果表明,葡萄糖、酵母粉、蛋白胨及KH2PO4对樟芝菌丝生长有重要影响,正交试验优化的培养基组成为:太子参6 g·L−1,葡萄糖10 g·L−1,酵母粉4 g·L−1,蛋白胨6 g·L−1,KH2PO4 1.5 g·L−1。利用优化培养基深层发酵,樟芝生物量达到4.73 g·L−1,与对照培养基及PDB培养基相比,胞内三萜含量分别提高2.75%和24.85%,胞外多糖分别提高161.11%和113.64%;发酵液中高密度无性孢子含量达1.8×107 个·mL−1。 结论 太子参适合作为樟芝双向液体发酵的药性成分,可有效促进樟芝菌丝生长、活性成分合成和无性孢子形成,是太子参根须副产物资源利用新途径。 Abstract:Objective To utilize a Pseudostellaria heterophylla by-product for increasing Antrodia camphorata yield and bio-effectiveness, formulation of a culture medium was optimized. Methods Powder of P. heterophylla fine roots was included in formulating a medium to maximize the mycelial growth of A. camphorata by a Plackett-Burman orthogonal experimental design. Results In addition to 6 g·L−1 of P. heterophylla powder, the medium was optimized to contain the ingredients critical to the mushroom growth, which included glucose 10 g·L−1, yeast extract 4 g·L−1, peptone 6 g·L−1, and KH2PO4 1.5 g·L−1. The A. camphorata culture on the formulated medium produced 4.73 g·L−1 biomass, which yielded 2.75% more intracellular triterpenoids than control and 24.85% more than PDB medium, and 161.11% more exopolysaccharides than control and 113.64% more than PDB medium. The fermentation broth also contained a high asexual spore at a density of 1.8×107 spores·mL−1. Conclusion P. heterophylla root powder could plausibly be added to the medium for A. camphorate culture as it promoted the mycelial growth, bioactive constituents yield, and asexual spore production of the mushroom. -
表 1 Plackett-Burman试验变量、水平及编码值
Table 1. Level and code of variables in Plackett-Burman design for medium formulation
变量
Variables代码
Codes水平 Levels/ (g·L−1) 低 Low (−1) 高 High (+1) 葡萄糖 Glucose A 0 10 酵母粉 Yeast extract B 0 5 蛋白胨 Peptone C 0 5 蔗糖 Sucrose D 0 10 玉米粉 Corn flour E 0 5 KH2PO4 F 0 1 MgSO4·7H2O G 0 0.50 表 2 L16 (45) 正交试验因素及水平
Table 2. Factors and levels in L16(45) Taguchi array optimization experiment
水平
Levels因素 Factors/(g·L−1) 太子参
(X1)葡萄糖
(X2)酵母粉
(X3)蛋白胨
(X4)KH2PO4
(X5)1 2 5 2 2 0.5 2 4 10 4 4 1.0 3 6 15 6 6 1.5 4 8 20 8 8 2.0 表 3 培养基成分筛选的PB试验设计及其生物量
Table 3. Plackett-Burman design matrix of variables for medium formulation and resulting yield of A. camphorata biomass
试验号
No.因素 Factors 生物量
Biomass /
(g·L−1)葡萄糖(A) 酵母粉(B) 蛋白胨(C) 蔗糖(D) 虚拟变量(Dm1) 玉米粉(E) KH2PO4(F) MgSO4·7H2O(G) 虚拟变量(Dm2) 1 −1 −1 1 −1 1 1 −1 1 1 0.87 2 −1 1 1 1 −1 −1 −1 1 −1 1.81 3 1 −1 1 1 1 −1 −1 −1 1 1.45 4 1 1 1 −1 −1 −1 1 −1 1 3.26 5 1 −1 −1 −1 1 −1 1 1 −1 1.39 6 −1 −1 −1 −1 −1 −1 −1 −1 −1 1.88 7 −1 1 1 −1 1 1 1 −1 −1 1.43 8 1 1 −1 1 1 1 −1 −1 −1 2.10 9 1 1 −1 −1 −1 1 −1 1 1 1.04 10 −1 1 −1 1 1 −1 1 1 1 2.39 11 −1 −1 −1 1 −1 −1 1 −1 1 1.41 12 1 −1 1 1 −1 1 1 1 −1 1.92 Dm1和Dm2为虚拟变量。
Dm1 and Dm2 were dummy variables.表 4 不同培养基成分对樟芝生物量的效应、贡献率及重要性排序
Table 4. Main effects, contribution rates, and orders of importance of medium ingredients on A. camphorata mycelial growth in submerged culture
因素
Factors效应
Effects贡献率
Percent contribution/%重要性排序
Importance order葡萄糖(A) 0.23 3.42 5 酵母粉(B) 0.52 17.61 2 蛋白胨(C) 0.088 0.51 7 蔗糖(D) 0.20 2.67 6 玉米粉(E) −0.57 21.17 1 KH2PO4(F) 0.44 12.78 3 MgSO4·7H2O(G) −0.35 8.11 4 表 5 培养基优化的正交试验结果及极差分析
Table 5. Orthogonal experiment results and range analysis on medium optimization
试验号
Run因素 Factors 生物量
Biomass/
(g·L−1)太子参
(X1)葡萄糖
(X2)酵母粉
(X3)蛋白胨
(X4)KH2PO4
(X5)1 1 1 1 1 1 2.90 2 1 2 2 2 2 4.41 3 1 3 3 3 3 4.52 4 1 4 4 4 4 2.53 5 2 1 2 3 4 2.92 6 2 2 1 4 3 4.10 7 2 3 4 1 2 3.34 8 2 4 3 2 1 4.51 9 3 1 3 4 2 2.67 10 3 2 4 3 1 4.62 11 3 3 1 2 4 3.93 12 3 4 2 1 3 3.82 13 4 1 4 2 3 3.26 14 4 2 3 1 4 3.62 15 4 3 2 4 1 2.48 16 4 4 1 3 2 3.17 K1 3.592 2.940 3.423 3.527 3.630 K2 3.717 4.188 4.027 3.408 3.397 K3 3.760 3.567 3.807 3.830 3.925 K4 3.132 3.507 2.945 3.437 3.250 极差R 0.628 1.248 1.082 0.422 0.675 优化水平
Optimal level3 2 2 3 3 表 6 正交试验方差分析
Table 6. Variance analysis on orthogonal experimental results
因素
Factors平方和
Sum of squares自由度
Degree of freedom均方
Mean squareF值
F value显著性
Significance太子参(X1) 0.992 3 0.331 2.214 葡萄糖(X2) 3.135 3 1.045 6.998 * 酵母粉(X3) 2.709 3 0.903 6.047 * 蛋白胨(X4) 0.448 3 0.149 1.000 KH2PO4(X5) 1.040 3 0.347 2.321 误差 Error 0.45 3 0.150 *表示差异显著(P<0.10)。
* indicates significant difference (P<0.10).表 7 不同培养基发酵樟芝菌丝产量以及菌丝和发酵液主要活性成分含量
Table 7. A. camphorata mycelia biomass and polysaccharide and triterpenoids contents in fermentation broth under submerged culture with different media
培养基
Medium生物量
Biomass/(g·L−1)胞内三萜
Intracellular
triterpenoids/(mg·g−1)胞内多糖
Intracellular
polysaccharides/(mg·g−1)胞外多糖
Exopolysaccharides/(g·L−1)优化培养基 Optimum 4.73±0.07 a 20.15±0.78 a 69.21±3.84 a 0.94±0.49 a 对照培养基 Control 1.96±0.05 b 19.61±0.17 a 70.27±1.31 a 0.36±0.03 c PDB培养基 PDB medium 1.34±0.08 c 16.14±1.51 b 56.39±0.86 b 0.44±0.04 b 不同小写字母表示不同培养基之间差异显著(P<0.05)。
Data with different letters on same column represent significant differences at P<0.05. -
[1] LU M C, EL-SHAZLY M, WU T Y, et al. Recent research and development of Antrodia cinnamomea [J]. Pharmacology & Therapeutics, 2013, 139(2): 124−156. [2] 夏永军, 张贤芳, 许赣荣. 响应面法优化樟芝液态发酵产Antrodin C [J]. 食品科学, 2012, 33(11):185−189.XIA Y J, ZHANG X F, XU G R. Optimization of medium components for antrodin C production by Antrodia camphorata using response surface methodology [J]. Food Science, 2012, 33(11): 185−189. (in Chinese) [3] GEETHANGILI M, TZENG Y M. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds [J]. Evidence-Based Complementary and Alternative Medicine: ECAM, 2011, 2011: 212641. [4] 庄毅, 潘扬, 谢小梅, 等. 药用真菌“双向发酵” 的起源、发展及其优势与潜力 [J]. 中国食用菌, 2007, 26(2):3−6. doi: 10.3969/j.issn.1003-8310.2007.02.001ZHUANG Y, PAN Y, XIE X M, et al. The origin, development and its advantage and potential of “the Bi-directional solid fermentation” for medicinal fungi [J]. Edible Fungi of China, 2007, 26(2): 3−6. (in Chinese) doi: 10.3969/j.issn.1003-8310.2007.02.001 [5] 辛燕花, 梁彬, 王颖霞, 等. 灵芝-银杏双向液体发酵条件优化及抗氧化的研究 [J]. 菌物学报, 2017, 36(10):1427−1435.XIN Y H, LIANG B, WANG Y X, et al. Optimization of the Ganoderma lucidum- Ginkgo biloba bi-directional liquid fermentation condition and antioxidation properties of its products [J]. Mycosystema, 2017, 36(10): 1427−1435. (in Chinese) [6] 辛燕花, 张铁丹, 张建华, 等. 灵芝-何首乌双向液体发酵菌质抗氧化活性研究 [J]. 食用菌学报, 2018, 25(3):63−71.XIN Y H, ZHANG T D, ZHANG J H, et al. Antioxidant capacity of fungal substance from Bi-directional fermentation of Ganoderma lucidum and Polygonum multiflorum [J]. Acta Edulis Fungi, 2018, 25(3): 63−71. (in Chinese) [7] 胡永乐, 张传海, 林崇展, 等. 响应面法优化蛹虫草与厚朴双向液体发酵工艺 [J]. 菌物学报, 2020, 39(5):944−954.HU Y L, ZHANG C H, LIN C Z, et al. Response surface methodology optimizing liquid fermentation process of Cordyceps militaris by use of magnoliae officinalis cortex as additional substrate [J]. Mycosystema, 2020, 39(5): 944−954. (in Chinese) [8] KIM H, JEONG J H, HWANG J H, et al. Enhancement of immunostimulation and anti-metastasis in submerged culture of bearded tooth mushroom ( Hericium erinaceum) mycelia by addition of ginseng extract [J]. Food Science and Biotechnology, 2010, 19(5): 1259−1266. doi: 10.1007/s10068-010-0180-1 [9] 赵艳, 刘高强, 朱朝阳, 等. 不同植物药提取物对灵芝细胞生长和胞内三萜产物形成的影响 [J]. 菌物学报, 2011, 30(2):249−254.ZHAO Y, LIU G Q, ZHU C Y, et al. Effects of extracts from different phytomedicines on cell growth and intracellular triterpenoids formation of Ganoderma lucidum in submerged fermentation [J]. Mycosystema, 2011, 30(2): 249−254. (in Chinese) [10] 李秋月, 林连兵, 杨雪娇, 等. 微生物发酵中草药的研究现状 [J]. 微生物学通报, 2021, 48(6):2232−2244.LI Q Y, LIN L B, YANG X J, et al. Research status of microbial fermentation of Chinese herbal medicine [J]. Microbiology China, 2021, 48(6): 2232−2244. (in Chinese) [11] 王静涵, 张斯童, 滕利荣, 等. 益生菌发酵中药的研究现状及产品开发 [J]. 食品工业科技, 2020, 41(14):337−343,348.WANG J H, ZHANG S T, TENG L R, et al. Research status and product development of probiotic fermentation of traditional Chinese medicine [J]. Science and Technology of Food Industry, 2020, 41(14): 337−343,348. (in Chinese) [12] HUSSAIN A, BOSE S, WANG J H, et al. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines [J]. Food Research International, 2016, 81: 1−16. doi: 10.1016/j.foodres.2015.12.026 [13] HU D J, SHAKERIAN F, ZHAO J, et al. Chemistry, pharmacology and analysis of Pseudostellaria heterophylla: A mini-review [J]. Chinese Medicine, 2019, 14: 21. doi: 10.1186/s13020-019-0243-z [14] 杨倩, 蔡茜茜, 林佳铭, 等. 太子参的生物活性及其在食品工业中的应用 [J]. 食品工业科技, 2021, 42(11):335−341.YANG Q, CAI X X, LIN J M, et al. Biological activities of Radix pseudostellariae and its application in food industry [J]. Science and Technology of Food Industry, 2021, 42(11): 335−341. (in Chinese) [15] CHANG C Y, LEE C L, PAN T M. Statistical optimization of medium components for the production of Antrodia cinnamomea AC0623 in submerged cultures [J]. Applied Microbiology and Biotechnology, 2006, 72(4): 654−661. doi: 10.1007/s00253-006-0325-6 [16] LU Z M, LEI J Y, XU H Y, et al. Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques [J]. Applied Microbiology and Biotechnology, 2011, 92(2): 371−379. doi: 10.1007/s00253-011-3544-4 [17] HE Y C, HE K Z, PU Q, et al. Optimization of cultivating conditions for triterpenoids production from Antrodia cinnmomea [J]. Indian Journal of Microbiology, 2012, 52(4): 648−653. doi: 10.1007/s12088-012-0290-y [18] ZHANG H, XIA Y J, WANG Y L, et al. Coupling use of surfactant and in situ extractant for enhanced production of Antrodin C by submerged fermentation of Antrodia camphorata [J]. Biochemical Engineering Journal, 2013, 79: 194−199. doi: 10.1016/j.bej.2013.08.005 [19] LI H X, LU Z M, GENG Y, et al. Efficient production of bioactive metabolites from Antrodia camphorata ATCC 200183 by asexual reproduction-based repeated batch fermentation [J]. Bioresource Technology, 2015, 194: 334−343. doi: 10.1016/j.biortech.2015.06.144 [20] CAI C S, MA J X, HAN C R, et al. Extraction and antioxidant activity of total triterpenoids in the mycelium of a medicinal fungus, Sanghuangporus sanghuang [J]. Scientific Reports, 2019, 9: 7418. doi: 10.1038/s41598-019-43886-0 [21] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28(3): 350−356. doi: 10.1021/ac60111a017 [22] PLACKETT R L, BURMAN J P. The design of optimum multifactorial experiments [J]. Biometrika, 1946, 33(4): 305−325. doi: 10.1093/biomet/33.4.305 [23] XIE C Y, GUO H Z, WU Z Y, et al. Optimization of high-quality dietary fiber production in submerged fermentation by Agrocybe chaxingu [J]. Annals of Microbiology, 2013, 63(3): 1169−1175. doi: 10.1007/s13213-012-0575-8 [24] LI Y, LIU Z Q, CUI F J, et al. Application of Plackett–Burman experimental design and Doehlert design to evaluate nutritional requirements for xylanase production by Alternaria Mali ND−16 [J]. Applied Microbiology and Biotechnology, 2007, 77(2): 285−291. doi: 10.1007/s00253-007-1167-6 [25] XU P, DING Z Y, QIAN Z, et al. Improved production of mycelial biomass and ganoderic acid by submerged culture of Ganoderma lucidum SB97 using complex media [J]. Enzyme and Microbial Technology, 2008, 42(4): 325−331. doi: 10.1016/j.enzmictec.2007.10.016 [26] DUDEKULA U T, DORIYA K, DEVARAI S K. A critical review on submerged production of mushroom and their bioactive metabolites [J]. 3 Biotech, 2020, 10(8): 337. doi: 10.1007/s13205-020-02333-y [27] 冯路瑶, 程显好, 董洪新, 等. 不同中药提取物对牛樟芝生长和胞内三萜产物形成的影响 [J]. 中国食用菌, 2018, 37(2):42−46.FENG L Y, CHENG X H, DONG H X, et al. Effects of extracts from different Chinese herb medicine on growth and intracellular triterpenoids formation of Antrodia camphorate [J]. Edible Fungi of China, 2018, 37(2): 42−46. (in Chinese) [28] YANG F C, MA T W, CHUANG Y T. Medium modification to enhance the formation of bioactive metabolites in shake flask cultures of Antrodia cinnamomea by adding citrus peel extract [J]. Bioprocess and Biosystems Engineering, 2012, 35(8): 1251−1258. doi: 10.1007/s00449-012-0712-6 [29] LI S L, HUANG Z N, HSIEH H H, et al. The augmented anti-tumor effects of Antrodia camphorata co-fermented with Chinese medicinal herb in human hepatoma cells [J]. The American Journal of Chinese Medicine, 2009, 37(4): 771−783. doi: 10.1142/S0192415X09007235 [30] 华蓉, 高章会, 孙达锋, 等. 牛樟芝菌丝体培养条件筛选 [J]. 中国食用菌, 2023, 42(1):43−47.HUA R, GAO Z H, SUN D F, et al. Screening of culture conditions for Antrodia camphporata Mycelium [J]. Edible Fungi of China, 2023, 42(1): 43−47. (in Chinese) [31] 李华祥, 陆震鸣, 耿燕, 等. 樟芝深层发酵工艺研究进展 [J]. 菌物学报, 2017, 36(10):1332−1345.LI H X, LU Z M, GENG Y, et al. Recent advance in submerged fermentation of Taiwanofungus camphoratus [J]. Mycosystema, 2017, 36(10): 1332−1345. (in Chinese) [32] LU Z M, HE Z, LI H X, et al. Modified arthroconidial inoculation method for the efficient fermentation of Antrodia camphorata ATCC 200183 [J]. Biochemical Engineering Journal, 2014, 87: 41−49. doi: 10.1016/j.bej.2014.03.020 [33] GENG Y, HE Z, LU Z M, et al. Antrodia camphorata ATCC 200183 sporulates asexually in submerged culture [J]. Applied Microbiology and Biotechnology, 2013, 97(7): 2851−2858. doi: 10.1007/s00253-012-4513-2 [34] 李华祥, 陆震鸣, 朱青, 等. 钙离子调控樟芝深层发酵无性产孢及其分子机制 [J]. 生物工程学报, 2017, 33(7):1124−1135.LI H X, LU Z M, ZHU Q, et al. Effect of calcium on sporulation of Taiwanofungus camphoratus in submerged fermentation [J]. Chinese Journal of Biotechnology, 2017, 33(7): 1124−1135. (in Chinese) [35] 李华祥, 王娟娟, 石瑀, 等. 金属离子促进樟芝深层发酵无性产孢 [J]. 食品与发酵工业, 2023, 49(10):55−63.LI H X, WANG J J, SHI Y, et al. Metal ions promoting sporulation of Antrodia cinnamomea in submerged fermentation [J]. Food and Fermentation Industries, 2023, 49(10): 55−63. (in Chinese) [36] 李华祥, 石瑀, 罗志珊, 等. 牛樟树提取物促进樟芝深层发酵无性产孢及其应用 [J]. 食品与发酵工业, 2022, 48(16):65−71.LI H X, SHI Y, LUO Z S, et al. Extract of Cinnamomum kanehirae Hay promoting sporulation of Antrodia cinnamomea in submerged fermentation and its application [J]. Food and Fermentation Industries, 2022, 48(16): 65−71. (in Chinese)