Genetic Diversity and DNA Fingerprints of Tea Germplasms in Yongtai, Fujian
-
摘要:
目的 分析永泰县茶树种质资源的遗传多样性及群体结构,探明不同茶树资源群体的亲缘关系,为当地茶树种质资源的收集和优异种质利用提供依据。 方法 利用 EST-SNP 分子标记技术对77份永泰及其周边地区茶树种质资源进行亲缘关系和遗传多样性分析。 结果 筛选出48个适用于鉴定永泰茶树种质的SNP位点。这些 SNP 位点的多态性信息指数平均值为0.407,观测杂合度平均值为0.303,期望杂合度平均值为0.271,固定指数平均值为−0.092,次等位基因频率平均值为0.268。通过主坐标分析、聚类分析和 Structure 群体结构分析,发现永泰茶树种质的同一群体内部的交流多于不同群体之间的交流,且梧桐的茶树种质与洑口、丹云等地的种质差异较大,两者间的遗传距离较远,但又与尤溪和大田的茶树亲缘关系较近。此外,应用筛选出的48个高质量 SNP 位点构建了54份永泰茶树种质的 DNA 指纹图谱,可用于相关茶树种质的精确鉴定。 结论 永泰县茶树种质资源多样性丰富;永泰县茶树种质资源按照地理位置可划分为梧桐镇产区和其他地区两个类群;梧桐茶树资源与大田和尤溪的茶树资源亲缘关系较为密切,而洑口、丹云等地的茶树资源与永泰县北部产茶地的茶树资源亲缘关系更近。 Abstract:Objective Genetic diversity and population structure of tea germplasms in Yongtai County were analyzed for resource utilization. Method The EST-SNP molecular marker technology was applied to analyze the genetic relationships and diversity of 77 tea germplasms collected from Yongtai and surrounding areas. Result Forty-eight SNP loci for identifying the germplasms were selected. The average polymorphism information index of the loci was 0.407 with an average observed heterozygosity of 0.303 and an expected one of 0.271, as well as the average fixed index of −0.092 and the frequency of secondary alleles of 0.268. The principal coordinate, cluster, and structure population structure analyses revealed that the interactions within a same population of the tea plants were stronger than among different populations at Yongtai, and that the tea germplasms found in Wutong significantly differed from those in Fukou, Danyun, and other places with significant genetic distance but close to those from Youxi and Datian. Using the 48 selected high-quality SNP loci, a library of the DNA fingerprints on 54 germplasms from Yongtai was established to provide a means for accurate germplasm identification. Conclusion Yongtai County was rich in the resource of varieties of tea plants, which could be classified geographically into those from Wutong and those from Fukou, Danyun and other localities in the county. The cultivars from Wutong were more closely related to those found in Datian and Youxi, whereas those from Fukou, Danyun, etc. more to those existed in the north part of the county. -
Key words:
- Yongtai /
- Camellia sinensis /
- germplasms /
- genetic diversity /
- relationship /
- SNP
-
图 3 永泰茶树种质资源的系统发育树与群体结构
K的比值=K的似然性二阶变化率的平均值/K 的似然度标准偏差;A:N-J树;B:层级树;C:K的比值;D:群体结构。
Figure 3. Phylogenetic tree and population structure of tea germplasms from Yongtai County
DeltaK=mean(|L"(K)|)/sd[L(K)]; A: Neighbor-joining tree; B: dendrogram on relationship among germplasms; C: Delta K; D: model-based germplasm structures.
表 1 用于SNP基因分型的供试茶树种质
Table 1. Germplasms used for SNP genotyping
来源
Source样品名称
Sample name份数
Numbers永泰北部相邻产茶区
Adjacent tea producing areas in the northern part of Yongtai福州晋安 JA:鼓山1号~鼓山6号(01-06);
福州长乐 CL:长乐1号~长乐5号(07-11)11 永泰丹云 DY 丹云1号~丹云11号(12-22) 11 永泰洑口 FK 洑口1号~洑口24号(23-46) 24 永泰梧桐 WT 梧桐1号~梧桐19号(47-65) 19 永泰南部相邻产茶区
Adjacent tea producing areas in the southern part of Yongtai大田 DT:大田1号~大田3号(66-68);尤溪 YX:
尤溪1号~尤溪3号(69-71);德化 DH:德化1号~德化6号(72-77)12 表 2 48个多态性SNP位点的等位基因信息
Table 2. Information on alleles of 48 polymorphic SNP markers
位点 Locus 信息指数 I 观测杂合度 Ho 期望杂合度 He 固定指数 F 位点 Locus 信息指数 I 观测杂合度 Ho 期望杂合度 He 固定指数 F cs1 0.453 0.326 0.299 −0.100 cs134 0.657 0.759 0.465 −0.620 cs115 0.622 0.527 0.432 −0.211 cs23 0.227 0.136 0.139 −0.036 cs15 0.381 0.281 0.244 −0.131 cs33 0.354 0.246 0.238 −0.027 cs167 0.441 0.410 0.301 −0.341 cs55 0.419 0.425 0.284 −0.430 cs3 0.327 0.146 0.194 0.106 cs76 0.291 0.227 0.183 −0.227 cs84 0.339 0.158 0.219 0.160 cs112 0.580 0.341 0.394 0.171 cs10 0.602 0.677 0.415 −0.570 cs139 0.531 0.378 0.353 −0.088 cs170 0.560 0.490 0.393 −0.230 cs191 0.379 0.106 0.261 0.607 cs202 0.566 0.406 0.382 −0.101 cs36 0.555 0.437 0.389 −0.130 cs51 0.435 0.415 0.286 −0.352 cs113 0.355 0.193 0.228 0.146 cs85 0.252 0.167 0.151 −0.092 cs122 0.471 0.529 0.329 −0.573 cs104 0.349 0.043 0.237 0.711 cs141 0.405 0.417 0.274 −0.432 cs131 0.576 0.298 0.393 0.212 cs198 0.436 0.269 0.276 −0.018 cs207 0.379 0.250 0.250 −0.014 cs213 0.310 0.231 0.201 −0.104 cs219 0.220 0.169 0.141 0.054 cs26 0.210 0.153 0.127 −0.183 cs31 0.280 0.240 0.181 −0.256 cs39 0.583 0.289 0.399 0.266 cs44 0.544 0.452 0.361 −0.182 cs48 0.221 0.187 0.144 −0.211 cs88 0.525 0.343 0.361 0.068 cs66 0.635 0.566 0.445 −0.269 cs132 0.197 0.140 0.118 −0.168 cs114 0.213 0.096 0.130 0.198 cs180 0.427 0.308 0.275 −0.143 cs146 0.176 0.120 0.103 −0.140 cs208 0.340 0.288 0.218 −0.242 cs20 0.170 0.101 0.102 −0.021 cs32 0.499 0.263 0.336 0.210 cs215 0.540 0.479 0.376 −0.254 cs54 0.441 0.285 0.289 −0.047 cs49 0.419 0.357 0.272 −0.258 cs9 0.468 0.294 0.313 0.084 cs81 0.170 0.133 0.107 −0.222 表 3 永泰与周边地区茶树种质资源群体间遗传分化指数和遗传距离
Table 3. Fixation indices and genetic distance of different tea populations in Yongtai
区域
Areas晋安
JA长乐
CL丹云
DY洑口
FK梧桐
WT大田
DT尤溪
YX德化
DH晋安 JA 0.071 0.040 0.036 0.165 0.133 0.212 0.078 长乐 CL 0.079 0.048 0.043 0.161 0.103 0.218 0.109 丹云 DY 0.037 0.050 0.028 0.172 0.115 0.219 0.088 洑口 FK 0.035 0.050 0.023 0.170 0.109 0.208 0.078 梧桐 WT 0.203 0.191 0.213 0.209 0.088 0.160 0.141 大田 DT 0.152 0.102 0.122 0.124 0.070 0.212 0.113 尤溪 YX 0.220 0.221 0.227 0.225 0.121 0.160 0.192 德化 DH 0.086 0.125 0.098 0.086 0.155 0.114 0.182 上三角数据为种群间遗传分化指数(Fst);下三角数据为种群间遗传距离(GD)。
Above diagonal: Fst; below diagonal : Nei’s genetic distance (GD).表 4 77份茶树种质资源的AMOVA分析
Table 4. AMOVAs of 77 tea germplasms
差异来源
Source of variation自由度
Mean of Square平方和
Sum of Square平均平方
Mean of Square估算方差
Estimated variance百分比 /% 种群之间 Among Pops 7 526.674 75.239 6.914 33 种群内部 Within Pops 69 981.794 14.229 14.229 67 合计 Total 76 1508.468 89.468 21.143 100 -
[1] 张文驹, 戎俊, 韦朝领, 等. 栽培茶树的驯化起源与传播 [J]. 生物多样性, 2018, 26(4):357−372. doi: 10.17520/biods.2018006ZHANG W J, RONG J, WEI C L, et al. Domestication origin and spread of cultivated tea plants [J]. Biodiversity Science, 2018, 26(4): 357−372.(in Chinese) doi: 10.17520/biods.2018006 [2] 阚能才. 茶树起源与川渝野生茶树分布研究 [J]. 西南农业学报, 2013, 26(1):382−385. doi: 10.3969/j.issn.1001-4829.2013.01.080KAN N C. Study on geographical distribution of wild tea trees in Sichuan and Chongqing, and origin of tea tree [J]. Southwest China Journal of Agricultural Sciences, 2013, 26(1): 382−385.(in Chinese) doi: 10.3969/j.issn.1001-4829.2013.01.080 [3] 陈橼. 茶业通史[M]. 2版. 北京: 中国农业出版社, 2008. [4] LIN Y, YU W T, ZHOU L, et al. Genetic diversity of oolong tea (Camellia sinensis) germplasms based on the nanofluidic array of single-nucleotide polymorphism (SNP) markers [J]. Tree Genetics & Genomes, 2019, 16(1): 3. [5] 许长同, 郭玉琼, 张延辉, 等. 永泰古茶树研究与开发利用初报 [J]. 东南园艺, 2018, 6(4):7−10. doi: 10.3969/j.issn.2095-5774.2018.04.003XU C T, GUO Y Q, ZHANG Y H, et al. A preliminary report on research, development and utilization of ancient tea tree in Yongtai County [J]. Southeast Horticulture, 2018, 6(4): 7−10.(in Chinese) doi: 10.3969/j.issn.2095-5774.2018.04.003 [6] 吴觉农, 吕允福, 张承春. 我国西南地区是世界茶树的原产地 [J]. 茶叶, 1979, 5(1):5−11.WU J N, LYU Y F, ZHANG C C. Southwest China is the origin of tea trees in the world [J]. Journal of Tea, 1979, 5(1): 5−11.(in Chinese) [7] 叶伟森. 茶树种质资源的多样性及茶树景观分析 [J]. 分子植物育种, 2023, 21(15):5154−5159.YE W S. Diversity of tea germplasm resources and analysis of tea tree landscapes [J]. Molecular Plant Breeding, 2023, 21(15): 5154−5159.(in Chinese) [8] 何环珠, 林文雄, 闵庆文, 等. 闽南古茶树资源价值与保护策略探讨 [J]. 生态与农村环境学报, 2022, 38(12):1508−1513.HE H Z, LIN W X, MIN Q W, et al. Discussion on the conservation and utilization of ancient tea tree resources in southern Fujian [J]. Journal of Ecology and Rural Environment, 2022, 38(12): 1508−1513.(in Chinese) [9] SAPKOTA D, ZHANG D P, PARK S, et al. Genotyping of jujube (Ziziphus spp. ) germplasm in new Mexico and southwestern texas [J]. Plants, 2023, 12(13): 2405. doi: 10.3390/plants12132405 [10] LIU C G, YU W T, CAI C P, et al. Genetic diversity of tea plant (Camellia sinensis (L. ) Kuntze) germplasm resources in Wuyi Mountain of China based on single nucleotide polymorphism (SNP) markers [J]. Horticulturae, 2022, 8(10): 932. doi: 10.3390/horticulturae8100932 [11] 王小萍, 刘飞, 李明红, 等. 基于GBS测序的古蔺野生茶树遗传多样性与群体遗传结构分析 [J]. 西南农业学报, 2023, 36(6):1141−1149.WANG X P, LIU F, LI M H, et al. Genetic diversity and structure analysis of Gulin wild tea resources based on GBS technology [J]. Southwest China Journal of Agricultural Sciences, 2023, 36(6): 1141−1149.(in Chinese) [12] 樊晓静, 于文涛, 王泽涵, 等. 基于EST-SNP的福鼎大白茶及其衍生品种的遗传关系分析 [J/OL]. 分子植物育种, 2022-01-13, http://kns.cnki.net/kcms/detail/46.1068.S.20220112.1947.014.html.FAN X J, YU W T, WANG Z H, et al. Genetic analysis of camellia sinensis ‘Fuding Dabaicha’ and Its derived cultivars using EST-SNP markers [J/OL]. Molecular Plant Breeding, 2022-01-13, http://kns.cnki.net/kcms/detail/46.1068.S.20220112.1947.014.html. [13] 樊晓静, 于文涛, 蔡春平, 等. 利用SNP标记构建茶树品种资源分子身份证 [J]. 中国农业科学, 2021, 54(8):1751−1772. doi: 10.3864/j.issn.0578-1752.2021.08.014FAN X J, YU W T, CAI C P, et al. Construction of molecular ID for tea cultivars by using of single-nucleotide polymorphism(SNP) markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751−1772.(in Chinese) doi: 10.3864/j.issn.0578-1752.2021.08.014 [14] 王泽涵, 于文涛, 樊晓静, 等. 利用SNP标记构建漳州南部茶树种质资源的分子身份证 [J]. 江苏农业科学, 2022, 50(18):284−289.WANG Z H, YU W T, FAN X J, et al. Molecular ID of tea plant germplasm resources in Southern Zhangzhou by SNP markers [J]. Jiangsu Agricultural Sciences, 2022, 50(18): 284−289.(in Chinese) [15] 朱晨, 田采云, 张舒婷, 等. 福建省53份茶树种质资源SSR-PCR反应体系的优化 [J]. 安徽农业科学, 2018, 46(28):88−91. doi: 10.3969/j.issn.0517-6611.2018.28.027ZHU C, TIAN C Y, ZHANG S T, et al. Optimization of SSR-PCR reaction system for 53 tea (Camellia sinensis) germplasm resources in Fujian Province [J]. Journal of Anhui Agricultural Sciences, 2018, 46(28): 88−91.(in Chinese) doi: 10.3969/j.issn.0517-6611.2018.28.027 [16] 陈潇敏, 章进汕, 金珊, 等. 福建大田茶树品种资源生化成分特征分析与评价 [J]. 南方农业学报, 2022, 53(2):381−390. doi: 10.3969/j.issn.2095-1191.2022.02.011CHEN X M, ZHANG J S, JIN S, et al. Analysis of biochemical components of tea variety resources in Datian, Fujian [J]. Journal of Southern Agriculture, 2022, 53(2): 381−390.(in Chinese) doi: 10.3969/j.issn.2095-1191.2022.02.011 [17] 王泽涵, 于文涛, 方德音, 等. 基于EST-SNP的福建云霄茶树种质资源遗传多样性分析 [J]. 福建农业学报, 2021, 36(12):1431−1438.WANG Z H, YU W T, FANG D Y, et al. EST-SNP marker-based genetic analysis on tea germplasms of Yunxiao in Fujian [J]. Fujian Journal of Agricultural Sciences, 2021, 36(12): 1431−1438.(in Chinese) [18] FANG W P, MEINHARDT L W, TAN H W, et al. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers [J]. Horticulture Research, 2014, 1: 14035. doi: 10.1038/hortres.2014.35 [19] LIN Y, YU W T, CAI C P, et al. Rapid varietal authentication of oolong tea products by microfluidic-based SNP genotyping[J]. Food Research International, 2022, 162(Pt A): 111970. [20] 陈亮, 杨亚军, 虞富莲. 中国茶树种质资源研究的主要进展和展望 [J]. 植物遗传资源学报, 2004, 5(4):389−392.CHEN L, YANG Y J, YU F L. Tea germplasm research in China: Recent progresses and prospects [J]. Journal of Plant Genetic Resources, 2004, 5(4): 389−392.(in Chinese) [21] 张序, 张秀姣, 马永鹏, 等. 基于GBS简化基因组技术的宽杯杜鹃遗传多样性分析 [J]. 植物研究, 2021, 41(3):429−435.ZHANG X, ZHANG X J, MA Y P, et al. Genetic diversity assessment of Rhododendron sinofalconeri with genotyping by sequencing(GBS) [J]. Bulletin of Botanical Research, 2021, 41(3): 429−435.(in Chinese) [22] 翟秀明, 李解, 唐敏, 等. 重庆30份茶树种质资源农艺性状与生化成分多样性 [J]. 浙江农业学报, 2021, 33(7):1244−1255.ZHAI X M, LI J, TANG M, et al. Diversity analysis of 30 tea (Camelia sinensis) germplasm resources in Chongqing based on agronomic traits and biochemical components [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1244−1255.(in Chinese) [23] 唐璐, 李长乐, 葛悦, 等. 茶树地方群体种资源叶片表型及生化组分多样性分析 [J]. 茶叶科学, 2023, 43(4):473−488.TANG L, LI C L, GE Y, et al. Diversity analysis of leaf phenotype and biochemical components in tea local population resources [J]. Journal of Tea Science, 2023, 43(4): 473−488.(in Chinese) [24] 胡亮, 孙伟, 马月辉. 藏系绵羊群体遗传多样性及遗传结构分析 [J]. 畜牧兽医学报, 2019, 50(6):1145−1153.HU L, SUN W, MA Y H. Study on genetic diversity and genetic structure of Tibetan sheep populations [J]. Chinese Journal of Animal and Veterinary Sciences, 2019, 50(6): 1145−1153.(in Chinese) [25] 杨军, 孔祥瑞, 王让剑. 基于EST-SSR标记的福建云霄县和尤溪县野生茶树遗传多样性分析 [J]. 茶叶学报, 2022, 63(1):11−19. doi: 10.3969/j.issn.1007-4872.2022.01.003YANG J, KONG X R, WANG R J. EST-SSR marker-based genetic diversity analysis on wild tea germplasms from Yunxiao and Youxi Counties in Fujian [J]. Acta Tea Sinica, 2022, 63(1): 11−19.(in Chinese) doi: 10.3969/j.issn.1007-4872.2022.01.003 [26] 黄寿辉, 温立香, 彭静茹, 等. 广西部分地区野生茶树遗传关系EST-SSR标记分析 [J]. 广西植物, 2019, 39(6):821−830. doi: 10.11931/guihaia.gxzw201809022HUANG S H, WEN L X, PENG J R, et al. Genetic relationship analysis of wild tea tree germplasm resources in part of Guangxi based on EST-SSR markers [J]. Guihaia, 2019, 39(6): 821−830.(in Chinese) doi: 10.11931/guihaia.gxzw201809022 [27] 崔蕾, 谢从新, 李艳和, 等. 斑点叉尾鮰4个群体遗传多样性的微卫星分析 [J]. 华中农业大学学报, 2012, 31(6):744−751. doi: 10.3969/j.issn.1000-2421.2012.06.015CUI L, XIE C X, LI Y H, et al. Analysis of genetic diversity among four different channel catfish populations by using microsatellite markers [J]. Journal of Huazhong Agricultural University, 2012, 31(6): 744−751.(in Chinese) doi: 10.3969/j.issn.1000-2421.2012.06.015 [28] SVED J A. The stability of linked systems of loci with a small population size [J]. Genetics, 1968, 59(4): 543−563. doi: 10.1093/genetics/59.4.543 [29] HARTL D L, CLARK A G. Principles of population genetics[M]. 3rd ed. Sunderland, Mass. : Sinauer Associates, 1997. [30] BROWN A H D. Plant population genetics, breeding, and genetic resources[M]. Sunderland, Mass. : Sinauer Associates, 1990. [31] BRUNI I, DE MATTIA F, LABRA M, et al. Genetic variability of relict Rhododendron ferrugineumL. populations in the Northern Apennines with some inferences for a conservation strategy [J]. Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology, 2012, 146(1): 24−32. doi: 10.1080/11263504.2011.557093 [32] 杨如兴. 图解茶树高效栽培与病虫害防治[M]. 北京: 中国农业出版社, 2022. [33] ANGELONI F, OUBORG N J, LEIMU R. Meta-analysis on the association of population size and life history with inbreeding depression in plants [J]. Biological Conservation, 2011, 144(1): 35−43. doi: 10.1016/j.biocon.2010.08.016