• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用CRISPR/Cas9基因编辑技术获得高直链淀粉水稻种质

吴敏 黄娟 石桃雄 朱丽伟 邓娇 梁成刚 汪燕 刘飞 李荣 蔡芳 陈庆富

吴敏,黄娟,石桃雄,等. 应用CRISPR/Cas9基因编辑技术获得高直链淀粉水稻种质 [J]. 福建农业学报,2024,39(1):17−24 doi: 10.19303/j.issn.1008-0384.2024.01.003
引用本文: 吴敏,黄娟,石桃雄,等. 应用CRISPR/Cas9基因编辑技术获得高直链淀粉水稻种质 [J]. 福建农业学报,2024,39(1):17−24 doi: 10.19303/j.issn.1008-0384.2024.01.003
WU M, HUANG J, SHI T X, et al. CRISPR/Cas9 Technology-generated High-amylose Rice Varieties [J]. Fujian Journal of Agricultural Sciences,2024,39(1):17−24 doi: 10.19303/j.issn.1008-0384.2024.01.003
Citation: WU M, HUANG J, SHI T X, et al. CRISPR/Cas9 Technology-generated High-amylose Rice Varieties [J]. Fujian Journal of Agricultural Sciences,2024,39(1):17−24 doi: 10.19303/j.issn.1008-0384.2024.01.003

应用CRISPR/Cas9基因编辑技术获得高直链淀粉水稻种质

doi: 10.19303/j.issn.1008-0384.2024.01.003
基金项目: 国家自然科学基金项目(32060508);贵州省科技计划项目(黔科合基础-ZK〔2021〕一般 109、黔科合基础-ZK〔2023〕 一般278);贵州师范大学学术新苗基金项目(黔师新苗〔2021〕A16号);云南省重大科技专项与重点研发计划项目(202202AE090020)
详细信息
    作者简介:

    吴敏(1999 —),女,硕士研究生,主要从事苦荞育种研究,E-mail:1930541367@qq.com

    通讯作者:

    黄娟(1988 —),女,博士,副教授,主要从事荞麦品质性状重要基因功能研究 ,E-mail:huang200699@163.com

  • 中图分类号: S511

CRISPR/Cas9 Technology-generated High-amylose Rice Varieties

  • 摘要:   目的  通过CRISPR/Cas9基因编辑技术遗传改良水稻种质,创制高直链淀粉新材料。  方法  以水稻品种中花11为试验材料,利用CRISPR/Cas9编辑系统对水稻淀粉分支酶(Starch branching enzymes, SBE)基因OsSBE 3进行靶向编辑,利用PCR技术鉴定无标记纯合突变体,并测定其淀粉含量。  结果  T0代获得10株突变体株系,T1代获得5个无标记纯合突变株系,其中4个株系(sbe3-22-6sbe3-25-3sbe3-25-4sbe3-25-6)的直链淀粉含量和淀粉直支比显著高于野生型。  结论  本研究创制了高直链淀粉含量的水稻新种质,为水稻品质改良提供了参考。
  • 图  1  YL-Hu-SBE3基因编辑载体信息

    红色方框表示gRNA插入位置。

    Figure  1.  Information on YL-Hu-SBE3 knockout vector

    Red box: gRNA insertion position.

    图  2  基因编辑T0代水稻突变体的检测

    WT表示野生型;黑色下划线表示靶点2序列;红色字体表示碱基插入;黑色虚线表示碱基缺失;||表示染色体正负链。

    Figure  2.  Detection of mutant lines in T0 generation rice

    WT: Wild type; black underline: sequence of Target 2; red font: base insertion; black dotted line: base deletion; ||: plus and minus chains of chromosome.

    图  3  T1代突变体无T-DNA插入原件筛选

    M:DL2000 DNA 标记;WT:野生型。泳道1~55 为sbe3 T1代突变体植株,其中5、6、10、11、18、23、24、26、27、31、37、39和54分别是sbe3-6-1sbe3-26-4sbe3-12-4sbe3-22-6sbe3-26-7sbe3-25-2sbe3-33-1sbe3-25-3sbe3-25-7sbe3-31-2sbe-25-5sbe3-25-4sbe3-25-6

    Figure  3.  Selection of T-DNA-free mutants in T1 generation

    M: DL2000 DNA marker; WT: wild type. Lanes 1–55: sbe3 mutants in T1 generation, of which 5, 6, 10, 11, 18, 23, 24, 26, 27, 31, 37, 39, and 54 represent sbe3-6-1, sbe3-26-4, sbe3-12-4, sbe3-22-6, sbe3-26-7, sbe3-25-2, sbe3-33-1, sbe3-25-3, sbe3-25-7, sbe3-31-2, sbe-25-5, sbe3-25-4, and sbe3-25-6, respectively.

    图  4  OsSBE 3基因 T1代突变体测序峰图

    A:OsSBE3基因结构和靶点2示意图; B~F:sbe3-12-4sbe3-22-6sbe3-25-3sbe3-25-4sbe3-25-6测序峰图;黑色下划线:靶点2位置;箭头:突变位置。

    Figure  4.  Sequences and peak map of Ossbe3 mutants in T1 generation

    A: Schematic diagram of gene structure and Target 2 of OsSBE3; B–F: sequences and peak map of sbe3-12-4, sbe3-22-6, sbe3-25-3, sbe3-25-4, and sbe3-25-6, respectively; black underline: position of target 2; arrow: mutation position.

    图  5  直链淀粉标准曲线

    Figure  5.  Standard curve of amylose

    图  6  支链淀粉标准曲线

    Figure  6.  Standard curve of amylopectin

    图  7  OsSBE3基因编辑后代淀粉含量

    A:直链淀粉含量;B:支链淀粉含量;C:淀粉直支比;****:与WT相比,差异极显著(P<0.01);ns:与WT相比,没有显著差异(P>0.05)。

    Figure  7.  Starch content of progeny after genetic editing on OsSBE3

    A: Amylose content; B: amylopectin content; C: amylose/amylopectin ratio; ****: extremely significant difference from WT (P<0.01); ns: not significantly differ from WT (P>0.05).

    表  1  引物信息

    Table  1.   Information on primers applied

    引物名称
    Primer name
    引物序列(5′-3′)
    Primer sequence (5′- 3′)
    用途
    Application
    YL-Hu-SBE3-Y1+cagtGGTCTCatgcaGAGAGCAGCGACCGCGACGT载体构建 Carrier construction
    YL-Hu-SBE3-Y1-cagtGGTCTCaaaacACGTCGCGGTCGCTGCTCTC载体构建 Carrier construction
    YL-Hu-SBE3-B1+cagtGGTCTCatgcaTTGCTCATGCGGTCTGCATTt载体构建 Carrier construction
    YL-Hu-SBE3-B1-cagtGGTCTCaaaacAATGCAGACCGCATGAGCAA载体构建 Carrier construction
    Pyl-ACCGGTAAGGCGCGCCGTAGT鉴定引物 Identification primer
    Pbw2-GCGATTAAGTTGGGTAACGCCAGGG鉴定引物 Identification primer
    Cas9-CL-FGAACGGTCGTAAGAGGATGC无标记检测 Unmarked detection
    Cas9-CL-RGGTGATGGACTGGTGGATGAG无标记检测 Unmarked detection
    SBE3-C-FTGAAGGTGTCACTTATCGAGAA纯合突变检测 Homozygous mutation detection
    SBE3-C-RACCACTGCGCTATACATGCGTT纯合突变检测 Homozygous mutation detection
    HYG-FGGTGATGGACTGGTGGATGAG鉴定引物 Identification primer
    HYG-RGGAAGTGCTTGACATTGGGGAGTTT鉴定引物 Identification primer
    32660-BA1-FGCGCACACCCACACACCGACCA靶点1检测 Target 1 detection
    32660-BA1-441RgGCGAACGGCACCTGGACACGAGA靶点1检测 Target 1 detection
    OsBE3_BA2_RACCACTGCGCTATACATGCGTT靶点2检测 Target 2 detection
    OsBE3_BA2_FTGAAGGTGTCACTTATCGAGAA靶点2检测 Target 2 detection
    黑色下划线表示Eco31 I/Bsa I酶切位点,小写斜体字母为酶切位点的保护碱基。
    Black underline: Eco31 I/Bsa I cleaving site; lowercase italics: protective base of site.
    下载: 导出CSV
  • [1] SUN Y W, JIAO G A, LIU Z P, et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes [J]. Frontiers in Plant Science, 2017, 8: 298.
    [2] PROSEKOV A Y, IVANOVA S A. Food security: The challenge of the present [J]. Geoforum, 2018, 91: 73−77. doi: 10.1016/j.geoforum.2018.02.030
    [3] CHEN L, MAGLIANO D J, ZIMMET P Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives [J]. Nature Reviews Endocrinology, 2012, 8: 228−236. doi: 10.1038/nrendo.2011.183
    [4] BHAVADHARINI B, MOHAN V, DEHGHAN M, et al. White rice intake and incident diabetes: A study of 132, 373 participants in 21 countries [J]. Diabetes Care, 2020, 43(11): 2643−2650. doi: 10.2337/dc19-2335
    [5] JIANG H X, LIO J, BLANCO M, et al. Resistant-starch formation in high-amylose maize starch during Kernel development [J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 8043−8047. doi: 10.1021/jf101056y
    [6] REGINA A, BERBEZY P, KOSAR-HASHEMI B, et al. A genetic strategy generating wheat with very high amylose content [J]. Plant Biotechnology Journal, 2015, 13(9): 1276−1286. doi: 10.1111/pbi.12345
    [7] VONK R J, HAGEDOORN R E, DE GRAAFF R, et al. Digestion of so-called resistant starch sources in the human small intestine [J]. The American Journal of Clinical Nutrition, 2000, 72(2): 432−438. doi: 10.1093/ajcn/72.2.432
    [8] 马先红, 张文露, 张铭鉴. 玉米淀粉的研究现状 [J]. 粮食与油脂, 2019, 32(2):4−6. doi: 10.3969/j.issn.1008-9578.2019.02.002

    MA X H, ZHANG W L, ZHANG M J. Research status of corn starch [J]. Cereals & Oils, 2019, 32(2): 4−6.(in Chinese) doi: 10.3969/j.issn.1008-9578.2019.02.002
    [9] BISELLI C, CAVALLUZZO D, PERRINI R, et al. Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining [J]. Rice, 2014, 7(1): 1. doi: 10.1186/1939-8433-7-1
    [10] RAHMAN S, BIRD A, REGINA A, et al. Resistant starch in cereals: Exploiting genetic engineering and genetic variation [J]. Journal of Cereal Science, 2007, 46(3): 251−260. doi: 10.1016/j.jcs.2007.05.001
    [11] DAINTY S A, KLINGEL S L, PILKEY S E, et al. Resistant starch bagels reduce fasting and postprandial insulin in adults at risk of type 2 Diabetes1 [J]. The Journal of Nutrition, 2016, 146(11): 2252−2259. doi: 10.3945/jn.116.239418
    [12] QU J Z, XU S T, ZHANG Z Q, et al. Evolutionary, structural and expression analysis of core genes involved in starch synthesis [J]. Scientific Reports, 2018, 8: 12736. doi: 10.1038/s41598-018-30411-y
    [13] WANG Z B, LI W H, QI J C, et al. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents [J]. Journal of Food Science and Technology, 2014, 51(3): 419−429. doi: 10.1007/s13197-011-0520-z
    [14] NAKAMURA Y, UTSUMI Y, SAWADA T, et al. Characterization of the reactions of starch branching enzymes from rice endosperm [J]. Plant and Cell Physiology, 2010, 51(5): 776−794. doi: 10.1093/pcp/pcq035
    [15] BIRT D F, BOYLSTON T, HENDRICH S, et al. Resistant starch: Promise for improving human health [J]. Advances in Nutrition, 2013, 4(6): 587−601. doi: 10.3945/an.113.004325
    [16] CHEN M H, HUANG L F, LI H M, et al. Signal peptide-dependent targeting of a rice α-amylase and cargo proteins to plastids and extracellular compartments of plant cells [J]. Plant Physiology, 2004, 135(3): 1367−1377. doi: 10.1104/pp.104.042184
    [17] WANG J, HU P, CHEN Z C, et al. Progress in high-amylose cereal crops through inactivation of starch branching enzymes [J]. Frontiers in Plant Science, 2017, 8: 469.
    [18] CARCIOFI M, BLENNOW A, JENSEN S L, et al. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules [J]. BMC Plant Biology, 2012, 12: 223. doi: 10.1186/1471-2229-12-223
    [19] SCHÖNHOFEN A, ZHANG X Q, DUBCOVSKY J. Combined mutations in five wheat STARCH BRANCHING ENZYME II genes improve resistant starch but affect grain yield and bread-making quality [J]. Journal of Cereal Science, 2017, 75: 165−174. doi: 10.1016/j.jcs.2017.03.028
    [20] SHU X L, JIAO G A, FITZGERALD M A, et al. Starch structure and digestibility of rice high in resistant starch [J]. Starch - Stä rke, 2006, 58(8): 411−417.
    [21] BUTARDO V M, FITZGERALD M A, BIRD A R, et al. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing [J]. Journal of Experimental Botany, 2011, 62(14): 4927−4941. doi: 10.1093/jxb/err188
    [22] ENDO M, MIKAMI M, TOKI S. Biallelic gene targeting in rice [J]. Plant Physiology, 2016, 170(2): 667−677. doi: 10.1104/pp.15.01663
    [23] SATOH H, NISHI A, YAMASHITA K, et al. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm [J]. Plant Physiology, 2003, 133(3): 1111−1121. doi: 10.1104/pp.103.021527
    [24] 刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展 [J]. 华南农业大学学报, 2019, 40(5):38−49. doi: 10.7671/j.issn.1001-411X.201905058

    LIU Y G, LI G S, ZHANG Y L, et al. Current advances on CRISPR/Cas genome editing technologies in plants [J]. Journal of South China Agricultural University, 2019, 40(5): 38−49.(in Chinese) doi: 10.7671/j.issn.1001-411X.201905058
    [25] NISHIMURA A, AICHI I, MATSUOKA M. A protocol for Agrobacterium-mediated transformation in rice [J]. Nature Protocols, 2006, 1: 2796−2802. doi: 10.1038/nprot.2006.469
    [26] POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components [J]. Plant Molecular Biology Reporter, 1997, 15(1): 8−15. doi: 10.1007/BF02772108
    [27] 郭新颖. 利用CRISPR/Cas9技术编辑Wx基因5’UTR区降低水稻直链淀粉含量[D]. 南宁: 广西大学, 2022.

    GUO X Y. Reduction of rice amylose content by editing the 5’UTR of the wx gene via CRISPR/Cas9 technology[D]. Nanning: Guangxi University, 2022. (in Chinese)
    [28] 牛淑琳, 鞠培娜, 周冠华, 等. 利用CRISPR/Cas9技术编辑OsRR22基因创制耐盐水稻种质资源 [J]. 山东农业科学, 2023, 55(2):30−35.

    NIU S L, JU P N, ZHOU G H, et al. Creation of salt-tolerant rice germplasm by editing OsRR22 gene via CRISPR/Cas9 technique [J]. Shandong Agricultural Sciences, 2023, 55(2): 30−35.(in Chinese)
    [29] 潘雯丽, 梁倩, 高群玉. 高直链玉米淀粉在食品、食品材料及保健食品中的应用进展 [J]. 食品工业科技, 2022, 43(21):396−404.

    PAN W L, LIANG Q, GAO Q Y. Application of high amylose maize starch in food, food material and health product [J]. Science and Technology of Food Industry, 2022, 43(21): 396−404.(in Chinese)
    [30] 周小耕. 以CRISPR/CaS9突变淀粉分支酶SBE3和SSⅢ基因创制稻米高抗性淀粉新种质[D]. 南京: 南京农业大学, 2019.

    ZHOU X G. Construction of novel rice germplasm with high level of resistant starch by mutating SBE3 and SSⅢ through CRISPR/Cas9 system[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
    [31] BISWAS S, IBARRA O, SHAPHEK M, et al. Increasing the level of resistant starch in ‘Presidio’ rice through multiplex CRISPR–Cas9 gene editing of starch branching enzyme genes [J]. The Plant Genome, 2023, 16(2): e20225. doi: 10.1002/tpg2.20225
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  501
  • HTML全文浏览量:  220
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-16
  • 修回日期:  2023-12-21
  • 网络出版日期:  2024-01-06
  • 刊出日期:  2024-01-28

目录

    /

    返回文章
    返回