Interacting Proteins of Olfactroy Receptor OR1and OR2 with Co-IP Approach Followed by Mass Spectrometry Analysis in Apis cerana cerana
-
摘要:
目的 中华蜜蜂(Apis cerana cerana)是我国特有的蜜蜂品种,其高度灵敏的嗅觉系统能在复杂气味环境中识别群体内化学信号以及区分食物源散发的特异性气味分子,气味受体(Odorant receptors, ORs)在中蜂识别气味分子的行为过程中起到了重要而又关键的作用。通过分析筛选OR1和OR2的互作蛋白,为深入探究OR1和OR2蛋白在蜜蜂嗅觉系统中的功能提供理论依据。 方法 通过构建OR1和OR2基因的真核表达载体pFastBac-OR1和pFastBac-OR2载体,转染Sf9细胞,提取细胞总蛋白,利用免疫共沉淀(Co-IP)联合质谱分析技术筛选鉴定与OR1和OR2互作的细胞蛋白,并对这些互作蛋白进行GO功能注释、KEGG信号通路和蛋白互作网络分析。 结果 IP组和IgG组重组蛋白在细胞内得到正确表达,利用Co-IP联合质谱分析技术共筛选到273个与OR1互作的细胞蛋白和204个与OR2互作的细胞蛋白,主要为微管蛋白、热休克蛋白、核糖体蛋白等。对这些蛋白进行GO功能富积分析,发现这些蛋白质涉及多种生物学功能,包括RNA剪接、核糖体和能量运输有关。KEGG信号通路分析结果表明互作蛋白参与调节了多条细胞内的重要通路,包括核糖体、剪接体、RNA转运等与核糖体相关的通路,丙酮酸代谢、硫胺素新陈代谢、脂肪酸生物合成、淀粉和蔗糖代谢、FoxO信号通路,Hedgehog信号通路等。 结论 OR1和OR2可能通过与多种蛋白直接或间接的相互作用调控并影响其嗅觉感受。 Abstract:Objectives Roles of the proteins interacting with the odorant receptors (ORs) in the highly sensitive olfactory system of Apis cerana cerana were investigated. Methods The eukaryotic expression vectors pFastBac of OR1 and OR2 in A. cerana cerana were constructed and transfected into Sf9 cells to extract the proteins. The cellular interacting proteins were identified by co-immunoprecipitation (Co-IP) and mass spectrometry, and GO function annotation, KEGG signal pathway analysis, and protein interaction network determination. Results The recombinant proteins of the IP and IgG groups were successfully expressed in the cells. There were 273 proteins interacting with OR1, and 204 with OR2. They were mainly tubulin, heat shock proteins, and ribosomal proteins involving in a variety of biological functions, such as RNA splicing and ribosome and energy transport. The KEGG analysis also showed their association with the regulation of several important intracellular pathways related to the ribosome, splicing body, RNA transport, pyruvate metabolism, thiamine metabolism, fatty acid biosynthesis, starch and sucrose metabolism, and FoxO and Hedgehog signals. Conclusion A unique honey bee species in China, A. cerana ceranahas evolved with a highly sensitive olfactory system capable of recognizing chemical signals in the bee population and distinguishing molecules emitted from food sources. OR1 and OR2 in A. cerana cerana regulated the olfactory transduction through direct or indirect interaction with a variety of proteins. -
Key words:
- Apis cerana cerana /
- odorant receptors /
- co-immunoprecipitation /
- interacting proteins
-
表 1 蛋白质鉴定信息统计
Table 1. Statistical information on protein identification
样本
Sample总谱图数
Total
spectrograms鉴定图数
Matched
spectrum鉴定肽段数
Peptide鉴定蛋白数
Identified
proteinOR1_Flag 79 137 2 734 1 487 565 OR1_IgG 76 029 1 153 699 317 OR2_Flag 75 160 2 055 1 280 481 OR2_IgG 76 020 1 212 767 318 表 2 OR1蛋白相互作用的细胞蛋白(部分蛋白)
Table 2. Cellular proteins interacting with OR1 (partial protein)
UniProt登录号
Accession No.蛋白名称
Description长度
Length/aa蛋白质分子量
Molecular weight/kDa理论等电点
pI分值
ScoreA0A8B9AYG1 微管蛋白β链 Tubulin beta chain 447 50.1 4.86 230.92 A0A8B6Z0H7 ATP合酶β亚单位 ATP synthase subunit beta 516 55.1 5.41 150.99 A0A8B8H9N3 微管蛋白β链 Tubulin beta chain 447 49.9 4.89 137.54 A0A8B9B4M6 微管蛋白β链 Tubulin beta chain 455 51 4.86 135.05 A0A8B9B2J4 微管蛋白α链 Tubulin alpha chain 450 50.2 5.2 133.21 A0A8B6WZM5 肌动蛋白相关蛋白1 Actin related protein 1 376 41.8 5.48 132.96 A0A8B6Z7B8 微管蛋白α链 Tubulin alpha chain 450 49.9 5.14 127.76 A0A8B8GXQ7 Actin肌动蛋白 376 41.7 5.48 105.7 A0A8B6Z7F0 延伸因子1-α异构体X1 Elongation factor 1-alpha isoform X1 461 50.3 9.03 105.16 A0A7M6UVC2 未知蛋白 Uncharacterized protein 640 70.3 5.82 82.67 A0A8B6WZH6 热休克蛋白同源3前体 Heat shock protein cognate 3 precursor 658 72.8 5.43 79.69 A0A8B6WZD4 热休克蛋白83 Heat shock protein 83 724 83.3 5.06 79.38 A0A8B6YS79 微管蛋白α链 Tubulin alpha chain 448 50.4 5.43 74.64 A0A8B9AWD0 ATP合酶亚单位 ATP synthase subunit alpha 547 59.5 8.9 74.6 A0A7M7GZK8 热休克蛋白83 Heat shock protein 83 718 82.7 5.05 73.46 A0A7M7GKN6 未知蛋白 Uncharacterized protein 357 36.9 9.38 73.41 A0A8B6WZI3 热休克同源蛋白4 Heat shock protein cognate 4 650 71 5.58 70.79 A0A8B6Z8U0 组蛋白H4 Histone H4 103 11.4 11.36 69.62 A0A7M7MSJ5 ATP依赖性解旋酶brm ATP-dependent helicase brm 2019 217.6 7.14 57.85 A0A8B9B3I3 60S核糖体蛋白L23 60S ribosomal protein L23 140 14.8 10.58 55.71 A0A8B7KRE5 SWI/SNF复合亚基SMARCC2 SWI/SNF complex subunit SMARCC2 1026 114.4 6.05 50.7 A0A7M7LPS5 40S核糖体蛋白S5 40S ribosomal protein S5 216 24.1 9.45 47.67 A0A8B7KKF5 前信使RNA加工剪接因子8 Pre-mRNA-processing-splicing factor 8 2374 277 8.88 44.2 A0A8B6Z1L0 60S核糖体蛋白L10a 60S ribosomal protein L10a 217 24.6 9.76 41.69 A0A7M7R4Y7 未知蛋白 Uncharacterized protein 358 38.5 7.02 41.56 A0A7M7IR07 40S核糖体蛋白S9 40S ribosomal protein S9 193 22.5 10.74 40.63 A0A8B6Z285 囊泡融合ATP酶 Vesicle-fusing ATPase 800 88.8 5.33 40.6 A0A8B6Z280 14-3-3蛋白zeta异构体X1 14-3-3 protein zeta isoform X1 247 28.1 4.89 39.95 A0A7M7GMY7 含有14_3_3结构域的蛋白质 14_3_3 domain-containing protein 256 29.1 4.89 39.62 A0A8B6Z1F6 26S蛋白酶体调节亚基8 26S proteasome regulatory subunit 8 405 45.7 8.5 38.87 A0A8B7KJ60 平移伸长因子2亚型X1 Translation elongation factor 2 isoform X1 844 94.5 6.52 36.68 A0A8B8H899 钙转运ATP酶肌浆/内质网型X1亚型
Calcium-transporting ATPase sarcoplasmic/
endoplasmic reticulum type isoform X11020 112.1 5.54 35.55 A0A7M7TG45 40S核糖体蛋白S18 40S ribosomal protein S18 181 21.1 9.96 35.13 A0A8B6ZA30 26S蛋白酶体调节亚基7 26S proteasome regulatory subunit 7 434 48.4 6.07 34.05 A0A8B6YVR3 RNA解旋酶 RNA helicase 728 82.2 9.42 33.23 A0A7M7RB98 网格蛋白重链 Clathrin heavy chain 1678 192 5.94 32.91 A0A7M7R7J9 含有AAA结构域的蛋白质 AAA domain-containing protein 440 49.2 6.76 32.26 A0A7M7MT55 微管蛋白α链 Tubulin alpha chain 432 48.2 5.06 31.9 A0A8B9B3X8 RNA解旋酶 RNA helicase 403 46.2 6.24 31.23 A0A8B6YTH0 α链异构体X2 Spectrin alpha chain isoform X2 2418 278.2 5.26 31.03 A0A8B6YUN0 钙调素依赖性蛋白激酶 Calcium/calmodulin-dependent protein kinase 474 53.9 7.88 30.31 A0A7M7R795 RNA解旋酶 RNA helicase 423 48.1 5.49 30.17 A0A7M7L992 ras相关蛋白Rab-5C Ras-related protein Rab-5C 214 23.4 8.13 30.16 A0A8B9B6N2 v型质子ATP酶催化亚基A V-type proton ATPase catalytic subunit A 616 68.3 5.43 29.78 表 3 与OR2蛋白相互作用的细胞蛋白(部分蛋白)
Table 3. Cellular proteins interacting with OR2 (partial protein)
UniProt登录号
Accession No.蛋白名称
Description长度
Length/aa蛋白质分子量
Molecular weight/kDa理论等电点
pI分值
ScoreA0A8B9AYG1 微管蛋白β链 Tubulin beta chain 447 50.1 4.86 186.38 A0A8B6Z0H7 ATP合酶β亚单位 ATP synthase subunit beta 516 55.1 5.41 118.08 A0A8B6WZM5 肌动蛋白相关蛋白1 Actin related protein 1 376 41.8 5.48 112.87 A0A8B6Z7B8 微管蛋白α链 Tubulin alpha chain 450 49.9 5.14 110.42 A0A8B8H9N3 微管蛋白β链 Tubulin beta chain 447 49.9 4.89 106.87 A0A8B9B2J4 微管蛋白α链 Tubulin alpha chain 450 50.2 5.2 100.02 A0A8B8GXQ7 肌动蛋白 Actin 376 41.7 5.48 92.02 A0A8B6Z7F0 延伸因子1- α异构体X1 Elongation factor 1-alpha isoform X1 461 50.3 9.03 75.26 A0A8B6WZD4 热休克蛋白83 Heat shock protein 83 724 83.3 5.06 64.73 A0A7M7GZK8 热休克蛋白83 Heat shock protein 83 718 82.7 5.05 63.46 A0A7M6UVC2 未知蛋白 Uncharacterized protein 640 70.3 5.82 60.39 A0A7M7GKN6 未知蛋白 Uncharacterized protein 357 36.9 9.38 57.52 A0A8B6WZH6 热休克蛋白同源3前体 Heat shock protein cognate 3 precursor 658 72.8 5.43 51.8 A0A8B6YS79 微管蛋白α链 Tubulin alpha chain 448 50.4 5.43 51.66 A0A8B6WZI3 热休克同源蛋白4 Heat shock protein cognate 4 650 71 5.58 46.41 A0A8B6Z8U0 组蛋白H4 Histone H4 103 11.4 11.36 43.62 A0A7M7MSJ5 ATP依赖性解旋酶brm ATP-dependent helicase brm 2019 217.6 7.14 43.24 A0A8B9AWD0 ATP合酶亚单位 ATP synthase subunit alpha 547 59.5 8.9 42.65 A0A8B9B3I3 60S核糖体蛋白L23 60S ribosomal protein L23 140 14.8 10.58 34.65 A0A7M7IR07 40S核糖体蛋白S9 40S ribosomal protein S9 193 22.5 10.74 32.99 A0A7M7R4Y7 未知蛋白 Uncharacterized protein 358 38.5 7.02 30.64 A0A8B6Z1F6 26S蛋白酶体调节亚基8 26S proteasome regulatory subunit 8 405 45.7 8.5 29.63 A0A7M7LPS5 40S核糖体蛋白S5 40S ribosomal protein S5 216 24.1 9.45 29.41 A0A8B9B6N2 V型质子ATP酶催化亚基A V-type proton ATPase catalytic subunit A 616 68.3 5.43 28.38 A0A7M6UPZ6 40S核糖体蛋白S14亚型X1 40S ribosomal protein S14 isoform X1 151 16.2 10.45 27.66 A0A8B7KRE5 SWI/SNF复合亚基SMARCC2 SWI/SNF complex subunit SMARCC2 1026 114.4 6.05 27.6 A0A8B6YVR3 RNA解旋酶 RNA helicase 728 82.2 9.42 27.19 A0A7M7RB98 网格蛋白重链 Clathrin heavy chain 1678 192 5.94 25.73 A0A8B8H899 钙转运ATP酶肌浆/内质网型X1亚型
Calcium-transporting ATPase sarcoplasmic/
endoplasmic reticulum type isoform X11020 112.1 5.54 24.84 A0A7M7IK02 RNA解旋酶 RNA helicase 563 64.3 10.14 24.52 A0A7M7L992 Rab-5C ras相关蛋白Rab-5C Ras-related protein 214 23.4 8.13 24.48 A0A8B6Z1L0 60S核糖体蛋白L10a 60S ribosomal protein L10a 217 24.6 9.76 24.42 A0A8B7KKF5 前信使RNA加工剪接因子8 Pre-mRNA-processing-splicing factor 8 2374 277 8.88 23.78 A0A8B6YTH0 α链异构体X2 Spectrin alpha chain isoform X2 2418 278.2 5.26 23.34 A0A7M7H2S3 未知蛋白 Uncharacterized protein 1970 227.1 5.5 22.78 A0A8B6YUN0 钙调素依赖性蛋白激酶 Calcium/calmodulin-dependent protein kinase 474 53.9 7.88 22.64 A0A7M7TG08 40S核糖体蛋白S23 40S ribosomal protein S23 143 16 10.56 22.61 A0A8B9B2J1 依赖ATP的RNA解旋酶WM6 ATP-dependent RNA helicase WM6 424 48.8 5.95 22.47 A0A7M7TG45 40S核糖体蛋白S18 40S ribosomal protein S18 181 21.1 9.96 22.04 A0A7M7R7J9 含有AAA结构域的蛋白质 AAA domain-containing protein 440 49.2 6.76 21.88 A0A8B8HD04 Putative ATP-dependent RNA helicase me31b 444 50.6 7.74 21.18 A0A7M7LKA7 组蛋白H2B Histone H2B 123 13.7 10.39 21.12 A0A7M7R836 类驱动蛋白 Kinesin-like protein 988 112.4 6.11 20.87 A0A7M7LK91 未知蛋白 Uncharacterized protein 130 14.8 10.05 20.81 A0A8B6Z285 囊泡融合ATP酶 Vesicle-fusing ATPase 800 88.8 5.33 20.56 -
[1] GADENNE C, BARROZO R B, ANTON S. Plasticity in insect olfaction: To smell or not to smell? [J]. Annual Review of Entomology, 2016, 61: 317−333. doi: 10.1146/annurev-ento-010715-023523 [2] CAREY A F, WANG G R, SU C Y, et al. Odorant reception in the malaria mosquito Anopheles gambiae [J]. Nature, 2010, 464(7285): 66−71. doi: 10.1038/nature08834 [3] MCINTYRE J C, HEGE M M, BERBARI N F. Trafficking of ciliary G protein-coupled receptors [J]. Methods in Cell Biology, 2016, 132: 35−54. [4] SATO K, PELLEGRINO M, NAKAGAWA T, et al. Insect olfactory receptors are heteromeric ligand-gated ion channels [J]. Nature, 2008, 452(7190): 1002−1006. doi: 10.1038/nature06850 [5] WICHER D, SCHÄFER R, BAUERNFEIND R, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels [J]. Nature, 2008, 452(7190): 1007−1011. doi: 10.1038/nature06861 [6] MUKUNDA L, MIAZZI F, SARGSYAN V, et al. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors [J]. Frontiers in Cellular Neuroscience, 2016, 10: 28. [7] CASSAU S, KRIEGER J. The role of SNMPs in insect olfaction [J]. Cell and Tissue Research, 2021, 383(1): 21−33. doi: 10.1007/s00441-020-03336-0 [8] FLEISCHER J, PREGITZER P, BREER H, et al. Access to the odor world: Olfactory receptors and their role for signal transduction in insects [J]. Cellular and Molecular Life Sciences, 2018, 75(3): 485−508. doi: 10.1007/s00018-017-2627-5 [9] STENGL M, FUNK N W. The role of the coreceptor Orco in insect olfactory transduction [J]. Journal of Comparative Physiology A, 2013, 199(11): 897−909. doi: 10.1007/s00359-013-0837-3 [10] ZHAO H T, GAO P F, ZHANG C X, et al. Molecular identification and expressive characterization of an olfactory co-receptor gene in the Asian honeybee, Apis cerana cerana [J]. Journal of Insect Science (Online), 2013, 13: 80. [11] GUO L N, ZHAO H T, JIANG Y S. Expressional and functional interactions of two Apis cerana cerana olfactory receptors [J]. PeerJ, 2018, 6: e5005. doi: 10.7717/peerj.5005 [12] GUO L N, ZHAO H T, XU B, et al. Odorant receptor might be related to sperm DNA integrity in Apis cerana cerana [J]. Animal Reproduction Science, 2018, 193: 33−39. doi: 10.1016/j.anireprosci.2018.03.029 [13] JIA J L, JIN J P, CHEN Q, et al. Eukaryotic expression, Co-IP and MS identify BMPR-1B protein-protein interaction network [J]. Biological Research, 2020, 53(1): 24. doi: 10.1186/s40659-020-00290-7 [14] 王焌翔, 杨小祯, 何欢, 等. GST-pull Down和免疫共沉淀联合质谱鉴定埃及伊蚊中肠的Cry4Ba和Cry11Aa互作蛋白 [J]. 农业生物技术学报, 2022, 30(9):1797−1809.WANG J X, YANG X Z, HE H, et al. Identification of Cry4Ba and Cry11Aa interacting proteins in Aedes aegypti midgut by GST-pull down and co-immunoprecipitation combined with mass spectrometry [J]. Journal of Agricultural Biotechnology, 2022, 30(9): 1797−1809.(in Chinese) [15] 王燕碧, 赵采芹, 唐宏, 等. 与鸡斑点型锌指结构蛋白互作的细胞蛋白筛选及其功能分析 [J]. 农业生物技术学报, 2022, 30(5):944−956.WANG Y B, ZHAO C Q, TANG H, et al. Screening and functional analysis of cellular proteins interacting with chicken(Gallus gallus) speckle-type POZ protein [J]. Journal of Agricultural Biotechnology, 2022, 30(5): 944−956.(in Chinese) [16] MURRAY B, PENG H, BARBIER-TORRES L, et al. Methionine adenosyltransferase α1 is targeted to the mitochondrial matrix and interacts with cytochrome P450 2E1 to lower its expression [J]. Hepatology, 2019, 70(6): 2018−2034. doi: 10.1002/hep.30762 [17] 赵焕之, 赵其平, 朱顺海, 等. 免疫共沉淀联合质谱技术筛选柔嫩艾美耳球虫钙依赖蛋白激酶3互作蛋白 [J]. 中国动物传染病学报, 2020, 28(5):1−7.ZHAO H Z, ZHAO Q P, ZHU S H, et al. Identification of etcdpk 3 interacting proteins by co-immunopre cipitation in combination with mass spectrometry [J]. Chinese Journal of Animal Infectious Diseases, 2020, 28(5): 1−7.(in Chinese) [18] WU Q S, MEDINA S G, KUSHAWAH G, et al. Translation affects mRNA stability in a codon-dependent manner in human cells [J]. eLife, 2019, 8: e45396. doi: 10.7554/eLife.45396 [19] DEFORGES J, LOCKER N, SARGUEIL B. mRNAs that specifically interact with eukaryotic ribosomal subunits [J]. Biochimie, 2015, 114: 48−57. doi: 10.1016/j.biochi.2014.12.008 [20] ACHENBACH J, NIERHAUS K H. The mechanics of ribosomal translocation [J]. Biochimie, 2015, 114: 80−89. doi: 10.1016/j.biochi.2014.12.003 [21] PENG J, LI Z, YANG Y, et al. Comparative transcriptome analysis provides novel insight into morphologic and metabolic changes in the fat body during silkworm metamorphosis [J]. International Journal of Molecular Sciences, 2018, 19(11): 3525. doi: 10.3390/ijms19113525 [22] PUIG O, MATTILA J. Understanding Forkhead box class O function: Lessons from Drosophila melanogaster [J]. Antioxidants & Redox Signaling, 2011, 14(4): 635−647. [23] DONG Y, CHEN W W, KANG K, et al. FoxO directly regulates the expression of TOR/S6K and vitellogenin to modulate the fecundity of the brown planthopper [J]. Science China Life Sciences, 2021, 64(1): 133−143. doi: 10.1007/s11427-019-1734-6 [24] CAI M J, ZHAO W L, JING Y P, et al. 20-Hydroxyecdysone activates Forkhead box O to promote proteolysis during Helicoverpa armigera molting [J]. Development, 2016, 143(6): 1005−1015. [25] MOLAEI M, VANDEHOEF C, KARPAC J. NF-κB shapes metabolic adaptation by attenuating foxo-mediated lipolysis in Drosophila [J]. Developmental Cell, 2019, 49(5): 802−810.e6. doi: 10.1016/j.devcel.2019.04.009 [26] WICHER D, MIAZZI F. Functional properties of insect olfactory receptors: Ionotropic receptors and odorant receptors [J]. Cell and Tissue Research, 2021, 383(1): 7−19. doi: 10.1007/s00441-020-03363-x [27] ANVARIAN Z, MYKYTYN K, MUKHOPADHYAY S, et al. Cellular signalling by primary cilia in development, organ function and disease [J]. Nature Reviews Nephrology, 2019, 15(4): 199−219. doi: 10.1038/s41581-019-0116-9 [28] ZHAO C L, ZHANG Z M, QU X M, et al. Desert hedgehog mediates the proliferation of medaka spermatogonia through Smoothened signaling [J]. Reproduction, 2022, 163(4): 209−218. doi: 10.1530/REP-21-0468 [29] ZOTTER B, DAGAN O, BRADY J, et al. Gli1 regulates the postnatal acquisition of peripheral nerve architecture [J]. The Journal of Neuroscience, 2022, 42(2): 183−201. doi: 10.1523/JNEUROSCI.3096-20.2021 [30] SIVAKUMAR S, QI S T, CHENG N Y, et al. TP53 promotes lineage commitment of human embryonic stem cells through ciliogenesis and sonic hedgehog signaling [J]. Cell Reports, 2022, 38(7): 110395. doi: 10.1016/j.celrep.2022.110395 [31] FINDAKLY S, DAGGUBATI V, GARCIA G, et al. Sterol and oxysterol synthases near the ciliary base activate the Hedgehog pathway [J]. The Journal of Cell Biology, 2021, 220(1): e202002026. doi: 10.1083/jcb.202002026 [32] MAURYA D K, BOHM S, ALENIUS M. Hedgehog signaling regulates ciliary localization of mouse odorant receptors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): E9386−E9394. [33] SANCHEZ G M, ALKHORI L, HATANO E, et al. Hedgehog signaling regulates the ciliary transport of odorant receptors in Drosophila [J]. Cell Reports, 2016, 14(3): 464−470. doi: 10.1016/j.celrep.2015.12.059