[1]
|
程龙飞, 陈红梅, 施少华, 等. 鸭疫里默氏菌的血清型及药物敏感性分析 [J]. 中国动物传染病学报, 2013, 21(4):23−28.CHENG L F, CHEN H M, SHI S H, et al. Serotyping and drug sensitivity of Riemerella anatipestifer isolates from ducks and geese [J]. Chinese Journal of Animal Infectious Diseases, 2013, 21(4): 23−28.(in Chinese)
|
[2]
|
陈国权, 吴征卓, 姚碧琼, 等. 两株鸭疫里默氏杆菌的分离鉴定及生物学特性分析 [J]. 中国预防兽医学报, 2020, 42(12):1226−1232.CHEN G Q, WU Z Z, YAO B Q, et al. Isolation, identification and biological characteristics analysis of Riemerella anatipestifer serotype 11 [J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(12): 1226−1232.(in Chinese)
|
[3]
|
冯雅婷, 朱敏, 刘丹, 等. 鸭疫里默氏杆菌流行菌株的分离鉴定及生物学特性 [J]. 微生物学通报, 2022, 49(11):4778−4785.FENG Y T, ZHU M, LIU D, et al. Isolation, identification, and biological characterization of Riemerella anatipestifer epidemic strains [J]. Microbiology China, 2022, 49(11): 4778−4785.(in Chinese)
|
[4]
|
胡福泉. 噬菌体的过去、现在与未来 [J]. 西南医科大学学报, 2021, 44(5):417−424.HU F Q. Bacteriophages in past, present and future [J]. Journal of Southwest Medical University, 2021, 44(5): 417−424.(in Chinese)
|
[5]
|
CHENG L F, CHEN H M, ZHENG T, et al. Complete genomic sequence of the virulent bacteriophage RAP44 of Riemerella anatipestifer [J]. Avian Diseases, 2012, 56(2): 321−327. doi: 10.1637/9770-050411-Reg.1
|
[6]
|
程龙飞, 廖维连, 陈红梅, 等. 宽谱鸭疫里默氏菌噬菌体筛选及生物学特性研究 [J]. 中国畜牧兽医, 2023, 50(3):1169−1176.CHENG L F, LIAO W L, CHEN H M, et al. Screening and biological characteristics of broad-spectrum Riemerella anatipestifer phage [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(3): 1169−1176.(in Chinese)
|
[7]
|
JOHNSON J E, CHIU W. DNA packaging and delivery machines in tailed bacteriophages [J]. Current Opinion in Structural Biology, 2007, 17(2): 237−243. doi: 10.1016/j.sbi.2007.03.011
|
[8]
|
HOLTZMAN T, GLOBUS R, MOLSHANSKI-MOR S, et al. A continuous evolution system for contracting the host range of bacteriophage T7 [J]. Scientific Reports, 2020, 10: 307. doi: 10.1038/s41598-019-57221-0
|
[9]
|
CHEN M M, ZHANG L, ABDELGADER S A, et al. Alterations in gp37 expand the host range of a T4-like phage [J]. Applied and Environmental Microbiology, 2017, 83(23): e01576−e01517.
|
[10]
|
LEMIRE S, YEHL K M, LU T K. Phage-based applications in synthetic biology [J]. Annual Review of Virology, 2018, 5(1): 453−476. doi: 10.1146/annurev-virology-092917-043544
|
[11]
|
ZAMPARA A, SØRENSEN M C H, GRIMON D, et al. Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria [J]. Scientific Reports, 2020, 10: 12087. doi: 10.1038/s41598-020-68983-3
|
[12]
|
MAYER O, JAIN P, WEISBROD T R, et al. Fluorescent reporter DS6A mycobacteriophages reveal unique variations in infectibility and phage production in mycobacteria [J]. Journal of Bacteriology, 2016, 198(23): 3220−3232. doi: 10.1128/JB.00592-16
|
[13]
|
KLUMPP J, DUNNE M, LOESSNER M J. A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications [J]. Current Opinion in Microbiology, 2023, 71: 102240. doi: 10.1016/j.mib.2022.102240
|
[14]
|
BERTOZZI SILVA J, STORMS Z, SAUVAGEAU D. Host receptors for bacteriophage adsorption [J]. FEMS Microbiology Letters, 2016, 363(4): fnw002. doi: 10.1093/femsle/fnw002
|
[15]
|
NOBREGA F L, VLOT M, DE JONGE P A, et al. Targeting mechanisms of tailed bacteriophages [J]. Nature Reviews Microbiology, 2018, 16: 760−773. doi: 10.1038/s41579-018-0070-8
|
[16]
|
GORDILLO ALTAMIRANO F L, BARR J J. Unlocking the next generation of phage therapy: The key is in the receptors [J]. Current Opinion in Biotechnology, 2021, 68: 115−123. doi: 10.1016/j.copbio.2020.10.002
|
[17]
|
HATFULL G F, DEDRICK R M, SCHOOLEY R T. Phage therapy for antibiotic-resistant bacterial infections [J]. Annual Review of Medicine, 2022, 73: 197−211. doi: 10.1146/annurev-med-080219-122208
|
[18]
|
GE H J, HU M Z, ZHAO G, et al. The “fighting wisdom and bravery” of tailed phage and host in the process of adsorption [J]. Microbiological Research, 2020, 230: 126344. doi: 10.1016/j.micres.2019.126344
|
[19]
|
STOCKDALE S R, MAHONY J, COURTIN P, et al. The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization [J]. Journal of Biological Chemistry, 2013, 288(8): 5581−5590. doi: 10.1074/jbc.M112.444901
|
[20]
|
SINGH A, ARUTYUNOV D, SZYMANSKI C M, et al. Bacteriophage based probes for pathogen detection [J]. The Analyst, 2012, 137(15): 3405−3421. doi: 10.1039/c2an35371g
|
[21]
|
THANKI A M, TAYLOR-JOYCE G, DOWAH A, et al. Unravelling the Links between Phage Adsorption and Successful Infection in Clostridium difficile [J]. Viruses, 2018, 10(8): 411. doi: 10.3390/v10080411
|