• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尾丝蛋白在噬菌体吸附鸭疫里默氏菌中的作用

刘娜 黄瑜 陈红梅 江南松 刘荣昌 傅光华 傅秋玲 梁齐章 万春和 李昂 程龙飞

刘娜,黄瑜,陈红梅,等. 尾丝蛋白在噬菌体吸附鸭疫里默氏菌中的作用 [J]. 福建农业学报,2024,39(1):1−6 doi: 10.19303/j.issn.1008-0384.2024.01.001
引用本文: 刘娜,黄瑜,陈红梅,等. 尾丝蛋白在噬菌体吸附鸭疫里默氏菌中的作用 [J]. 福建农业学报,2024,39(1):1−6 doi: 10.19303/j.issn.1008-0384.2024.01.001
LIU N, HUANG Y, CHEN H M, et al. Role of Tail Fiber Protein in Attaching Riemerella anatipestifer to Phage [J]. Fujian Journal of Agricultural Sciences,2024,39(1):1−6 doi: 10.19303/j.issn.1008-0384.2024.01.001
Citation: LIU N, HUANG Y, CHEN H M, et al. Role of Tail Fiber Protein in Attaching Riemerella anatipestifer to Phage [J]. Fujian Journal of Agricultural Sciences,2024,39(1):1−6 doi: 10.19303/j.issn.1008-0384.2024.01.001

尾丝蛋白在噬菌体吸附鸭疫里默氏菌中的作用

doi: 10.19303/j.issn.1008-0384.2024.01.001
基金项目: 福建省科技计划公益类专项(2021R10260011);福建省农业高质量发展超越“5511”协同创新工程项目(XTCXGC2021012);福建省农业科学院科技创新团队建设项目(CXTD2021005-1)
详细信息
    作者简介:

    刘娜(1997 —),女,硕士研究生,主要从事预防兽医学研究,E-mail:liunaupip560@163.com

    通讯作者:

    李昂(1964 —),男,硕士,教授,主要从事动物遗传育种与繁殖研究,E-mail:poul@fafu.edu.cn

    程龙飞(1971 —),男,硕士,研究员,主要从事家禽传染病学研究,E-mail:13705991428@139.com

  • 中图分类号: S855.1

Role of Tail Fiber Protein in Attaching Riemerella anatipestifer to Phage

  • 摘要:   目的  以鸭疫里默氏菌( Riemerella anatipestifer )噬菌体CRP2为对象,研究尾丝蛋白(Tail fiber protein,TFP)对噬菌体吸附功能的影响。  方法  克隆ORF70假定的TFP基因,构建重组表达载体pET28a(+)-TFP,在大肠杆菌E.Coli BL21(DE3)中诱导表达,通过Ni-NTA亲和层析纯化。酶联免疫吸附试验(ELISA)测定重组蛋白与CRP2噬菌体的宿主菌外膜蛋白(Outer membrane protein, OMP)的结合作用。竞争吸附试验测定重组蛋白对CRP2噬菌体吸附率的影响。  结果  构建了pET28a(+)-TFP重组表达质粒,在大肠杆菌中得到了可溶性表达。纯化的重组蛋白可以与宿主菌的OMP结合,也可以抑制CRP2对其宿主菌的吸附。  结论  ORF70编码的TFP是噬菌体CRP2的一种受体结合蛋白,其对应的受体是宿主菌的OMP。
  • 图  1  重组蛋白的SDS-PAGE分析

    M:蛋白Marker;1:TFP未诱导;2:TFP裂解液上清;3:TFP裂解液沉淀;4:纯化的rTFP。

    Figure  1.  SDS-PAGE of recombinant protein

    M: Protein molecular weight marker; 1: TFP expression without induction; 2: Expression of TFP lysate supernatant; 3: Expression of TFP lysate precipitate; 4: Purified protein of rTFP.

    图  2  重组蛋白的Western blotting分析

    1:rTFP;M:蛋白Marker。

    Figure  2.  Recombinant protein identified by western blot

    1: Recombinant rTFP; M: Protein molecular weight marker.

    图  3  重组蛋白与OMP的ELISA结果

    OMP+rTFP:OMP与rTFP的作用结果;OMP+PBS:OMP与PBS的作用结果。***:两组数据差异极显著(P<0.01)。

    Figure  3.  ELISA results on recombinant protein and OMP

    OMP+rTFP: Interaction between OMP and rTFP; OMP+PBS: Interaction between OMP and PBS. ***: extremely significant difference between two data sets( P <0.01).

    图  4  重组蛋白对噬菌体CRP2吸附率的影响

    Figure  4.  Effect of recombinant proteins on CRP2 adsorption rate

    图  5  噬菌体CRP2、CRP5、CRP12、CRP19尾丝蛋白氨基酸序列的比较

    图形上的黑色矩形框表示序列相似性最高,红色次之,绿色更低。黑点表示氨基酸缺失。

    Figure  5.  Amino acid sequences of TFPs in CRP2, CRP5, CRP12, and CRP19

    Black rectangle box indicates highest sequence similarity; red, intermediate; and green, lowest. Black dot indicates missing amino acid.

  • [1] 程龙飞, 陈红梅, 施少华, 等. 鸭疫里默氏菌的血清型及药物敏感性分析 [J]. 中国动物传染病学报, 2013, 21(4):23−28.

    CHENG L F, CHEN H M, SHI S H, et al. Serotyping and drug sensitivity of Riemerella anatipestifer isolates from ducks and geese [J]. Chinese Journal of Animal Infectious Diseases, 2013, 21(4): 23−28.(in Chinese)
    [2] 陈国权, 吴征卓, 姚碧琼, 等. 两株鸭疫里默氏杆菌的分离鉴定及生物学特性分析 [J]. 中国预防兽医学报, 2020, 42(12):1226−1232.

    CHEN G Q, WU Z Z, YAO B Q, et al. Isolation, identification and biological characteristics analysis of Riemerella anatipestifer serotype 11 [J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(12): 1226−1232.(in Chinese)
    [3] 冯雅婷, 朱敏, 刘丹, 等. 鸭疫里默氏杆菌流行菌株的分离鉴定及生物学特性 [J]. 微生物学通报, 2022, 49(11):4778−4785.

    FENG Y T, ZHU M, LIU D, et al. Isolation, identification, and biological characterization of Riemerella anatipestifer epidemic strains [J]. Microbiology China, 2022, 49(11): 4778−4785.(in Chinese)
    [4] 胡福泉. 噬菌体的过去、现在与未来 [J]. 西南医科大学学报, 2021, 44(5):417−424.

    HU F Q. Bacteriophages in past, present and future [J]. Journal of Southwest Medical University, 2021, 44(5): 417−424.(in Chinese)
    [5] CHENG L F, CHEN H M, ZHENG T, et al. Complete genomic sequence of the virulent bacteriophage RAP44 of Riemerella anatipestifer [J]. Avian Diseases, 2012, 56(2): 321−327. doi: 10.1637/9770-050411-Reg.1
    [6] 程龙飞, 廖维连, 陈红梅, 等. 宽谱鸭疫里默氏菌噬菌体筛选及生物学特性研究 [J]. 中国畜牧兽医, 2023, 50(3):1169−1176.

    CHENG L F, LIAO W L, CHEN H M, et al. Screening and biological characteristics of broad-spectrum Riemerella anatipestifer phage [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(3): 1169−1176.(in Chinese)
    [7] JOHNSON J E, CHIU W. DNA packaging and delivery machines in tailed bacteriophages [J]. Current Opinion in Structural Biology, 2007, 17(2): 237−243. doi: 10.1016/j.sbi.2007.03.011
    [8] HOLTZMAN T, GLOBUS R, MOLSHANSKI-MOR S, et al. A continuous evolution system for contracting the host range of bacteriophage T7 [J]. Scientific Reports, 2020, 10: 307. doi: 10.1038/s41598-019-57221-0
    [9] CHEN M M, ZHANG L, ABDELGADER S A, et al. Alterations in gp37 expand the host range of a T4-like phage [J]. Applied and Environmental Microbiology, 2017, 83(23): e01576−e01517.
    [10] LEMIRE S, YEHL K M, LU T K. Phage-based applications in synthetic biology [J]. Annual Review of Virology, 2018, 5(1): 453−476. doi: 10.1146/annurev-virology-092917-043544
    [11] ZAMPARA A, SØRENSEN M C H, GRIMON D, et al. Exploiting phage receptor binding proteins to enable endolysins to kill Gram-negative bacteria [J]. Scientific Reports, 2020, 10: 12087. doi: 10.1038/s41598-020-68983-3
    [12] MAYER O, JAIN P, WEISBROD T R, et al. Fluorescent reporter DS6A mycobacteriophages reveal unique variations in infectibility and phage production in mycobacteria [J]. Journal of Bacteriology, 2016, 198(23): 3220−3232. doi: 10.1128/JB.00592-16
    [13] KLUMPP J, DUNNE M, LOESSNER M J. A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications [J]. Current Opinion in Microbiology, 2023, 71: 102240. doi: 10.1016/j.mib.2022.102240
    [14] BERTOZZI SILVA J, STORMS Z, SAUVAGEAU D. Host receptors for bacteriophage adsorption [J]. FEMS Microbiology Letters, 2016, 363(4): fnw002. doi: 10.1093/femsle/fnw002
    [15] NOBREGA F L, VLOT M, DE JONGE P A, et al. Targeting mechanisms of tailed bacteriophages [J]. Nature Reviews Microbiology, 2018, 16: 760−773. doi: 10.1038/s41579-018-0070-8
    [16] GORDILLO ALTAMIRANO F L, BARR J J. Unlocking the next generation of phage therapy: The key is in the receptors [J]. Current Opinion in Biotechnology, 2021, 68: 115−123. doi: 10.1016/j.copbio.2020.10.002
    [17] HATFULL G F, DEDRICK R M, SCHOOLEY R T. Phage therapy for antibiotic-resistant bacterial infections [J]. Annual Review of Medicine, 2022, 73: 197−211. doi: 10.1146/annurev-med-080219-122208
    [18] GE H J, HU M Z, ZHAO G, et al. The “fighting wisdom and bravery” of tailed phage and host in the process of adsorption [J]. Microbiological Research, 2020, 230: 126344. doi: 10.1016/j.micres.2019.126344
    [19] STOCKDALE S R, MAHONY J, COURTIN P, et al. The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization [J]. Journal of Biological Chemistry, 2013, 288(8): 5581−5590. doi: 10.1074/jbc.M112.444901
    [20] SINGH A, ARUTYUNOV D, SZYMANSKI C M, et al. Bacteriophage based probes for pathogen detection [J]. The Analyst, 2012, 137(15): 3405−3421. doi: 10.1039/c2an35371g
    [21] THANKI A M, TAYLOR-JOYCE G, DOWAH A, et al. Unravelling the Links between Phage Adsorption and Successful Infection in Clostridium difficile [J]. Viruses, 2018, 10(8): 411. doi: 10.3390/v10080411
  • 加载中
图(5)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  229
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-17
  • 修回日期:  2023-11-14
  • 网络出版日期:  2024-01-25
  • 刊出日期:  2024-01-28

目录

    /

    返回文章
    返回