Microbial Biomass Carbon and Nitrogen at Man-made Forests in Northern China Hilly Areas
-
摘要:
目的 土壤微生物是土壤中重要的存在,土壤中的微生物量碳和微生物量氮能直接或间接参与土壤理化过程,是维持土壤质量的重要指标,可综合反映土壤肥力特性和生物活性。 方法 在河南省济源市黄河小浪底生态系统定位站内选择3种人工纯林,包括刺槐(Robinia pseudoacacia)林、栓皮栎(Quercus variabilis)林和侧柏(Platyclodus orientalis)林,采集未分解枯落物层(L层)、半分解/腐殖化枯落物层(F/H层)以及矿质土层(0~10、10~20 cm)的土壤样品,测定微生物生物量碳(Microbial biomass carbon, MBC)、微生物生物量氮(Microbial biomass nitrogen, MBN)、MBC/MBN以及枯落物层和土壤层总碳(Total carbon, TC)、总氮(Total nitrogen, TN)、可溶性有机碳(Dissolved organic carbon, DOC)和可溶性有机氮(Dissolved organic nitrogen, DON),研究探讨土壤微生物生物量(Soil microbial biomass, SMB)与树种、土深的关系及其机理。 结果 (1)在枯落物层,3种林型的TC最高值均出现在F/H层,而TN的最高值则均出现在L层;3种林型TC和TN均表现为F/H层>L层>0~10 cm、10~20 cm土层,差异显著(P<0.05)。3种林型的DOC表现为枯落物层高于矿质土壤层,DON为矿质土壤层高于枯落物层。枯落物层3种林分之间的DOC含量均表现为栓皮栎林显著高于刺槐林,二者与侧柏林之间差异不显著(P>0.05)。(2)在枯落物层,3种林型的MBC均表现为F/H层高于L层,表现为刺槐林>栓皮栎林>侧柏林。在矿质土层中,3种林型的MBC均为0~10 cm高于10~20 cm土层,表现为栓皮栎林>刺槐林>侧柏林,同一土层的刺槐林和栓皮栎林之间差异不显著(P>0.05)。枯落物层及矿质土层的MBN均表现为栓皮栎林>刺槐林>侧柏林。栓皮栎林在各个土层中均是MBN最高的树种,且与侧柏林之间差异显著(P<0.05)。(3)L和F/H层的MBC/MBN比值相差不大,而在矿质土层中,随土深增加MBC/MBN呈上升趋势。在矿质土层,3种林型MBC/MBN均表现为10~20 cm显著高于0~10 cm;在0~10 cm,3种林型之间差异不显著(P>0.05),在10~20 cm,刺槐林显著高于侧柏林(P>0.05),而与栓皮栎林之间差异不显著(P<0.05)。(4)相关性分析表明,3种林型的MBC均与总碳、总氮呈极显著正相关(P<0.01),其中栓皮栎林MBC与总碳的相关系数最大,为0.959。刺槐林和栓皮栎林的C/N与总碳、总氮呈负相关,而侧柏林的C/N则与总碳、总氮呈正相关,相关系数分别为0.512和0.524。 结论 在华北低丘陵山区种植栓皮栎对土壤的生态恢复效果较好,更有利于生态系统的碳氮循环。 Abstract:Objective Microbial biomass carbon and nitrogen (MBC and MBN) in soil at the man-made forests on northern China hilly lands were studied. Method Three man-made forests that contained solely Robinia pseudoacacia, Quercus variabilis or Platyclodus orientalis trees at the Xiaolangdi Ecosystem Positioning Station of the Yellow River in Jiyuan, Henan were selected for the study. Soil samples in the layers of undecomposed litter (L), semi-decomposed/humic litter (F/H), and litter-free 0–10 cm and 10–20 cm depths were collected to determine the MBC, MBN, MBC/MBN ratio, and physiochemical properties. Correlations of the soil microbial biomass (SMB) with different tree species and soils were analyzed. Result (1) The highest total carbon (TC) in the soil that contained plant litter at the 3 forests was found in the F/H layer, and the greatest total nitrogen (TN) in the L layer. The TC and TN of the forests ranked in the order of F/H layer>L layer>0–10 cm and 10–20 cm soils with no fallen wastes (P<0.05). DOC was higher in the layers with litter than without, but opposite on DON . The DOC in the littered soil was significantly higher at the Q. variabilis forest than the R. pseudoacacia forest, and no significant difference between the two and the P. orientalis forest (P>0.05). (2) In the soil layers with tree litter, MBC was higher in the F/H than in the L layer with a ranking of R. pseudoacacia>Q. variabilis>P. orientalis among the 3 forests. In the two layers of litter-free mineral soil, MBC was higher in the depth of 0–10 cm than in the deeper layer. It ranked among the different forests as Q. variabilis>R. pseudoacacia>P. orientalis with no significant difference between the Q. variabilis and R. pseudoacacia forests (P>0.05). The MBNs of both the littered and litter-free soil at the forests were Q. variabilis>R. pseudoacacia>P. orientalis, while Q. variabilis generated the highest MBN that was significantly different from P. orientalis (P<0.05). (3) The MBC/MBN ratios of the L and F/H layers did not differ significantly, whereas those of the mineral soils tended to increase with the depth. The 0–10 cm litter-free soil did not differ significantly on the ratio among the forests (P>0.05). However, that of the 10–20 cm soil at the R. pseudoacacia forests were significantly higher than that at the P. orientalis forest (P>0.05), but no significant difference between them and that at the Q. variabilis forest (P<0.05). (4) Significant correlations existed between the MBC and the TC and TN at the 3 forests. The correlation coefficient of 0.959 between MBC and TC of Q. variabilis was the highest among all. The C/N ratios of R. pseudoacacia and Q. variabilis negatively, while the C/N of P. orientalis positively, correlated with TC and TN, with correlation coefficients of 0.512 and 0.524, respectively. Conclusion Conducive to environmental carbon and nitrogen cycling, Q. variabilis appeared to be a prudent choice of plant for the ecological restoration in the low mountainous areas in northern China. -
Key words:
- Microbial biomass /
- microbial biomass carbon /
- microbial biomass nitrogen /
- C/N ratio /
- man-made forests
-
图 1 不同林分及土层/枯落物层总碳、总氮、可溶性有机碳和可溶性有机氮的变化特征
不同小写字母表示同一土层/枯落物层不同林型之间差异显著(P<0.05),不同大写字母表示同一林型不同土层/枯落物层之间差异显著(P<0.05),下同。
Figure 1. Changes in TC, TN, DOC and DON at test sites
Data with different lowercase letters indicate significant difference between different forests on same soil or littered layer (P<0.05); those with different uppercase letters, significant difference between different layers at same forest (P<0.05).
表 1 样地基本情况
Table 1. Basic information on sampling sites
林型
Forest type林龄
Stand age/a坡向
Aspect坡度
Slope/(°)平均树高
Mean tree height/m平均胸径
Mean breast diameter/cm林分密度
Stand density/(株·hm−2)郁闭度
Canopy density刺槐纯林R 45 南坡 20 9.66±0.57 11.35±0.67 1800±100 0.82±0.02 栓皮栎纯林Q 43 南坡 23 8.75±0.25 10.78±0.30 1900±100 0.86±0.06 侧柏纯林P 42 北坡 22 9.86±0.16 10.64±0.52 2900±100 0.90±0.04 表 2 土壤微生物生物量碳、氮及其比值与理化性质相关性分析
Table 2. Correlation between MBC, MBN, MBC/MBN, and physiochemical properties of soil
林型
Forest
type指标
Index总碳
Total
carbon总氮
Total
nitrogen可溶性
有机碳
Dissolved
organic
carbon可溶性
有机氮
Dissolved
organic
nitrogen刺槐
林RMBC 0.941** 0.957** 0.169 0.120 MBN 0.750** 0.750** 0.389 0.142 MBC/MBN −0.255 −0.254 −0.594* 0.011 栓皮
栎林QMBC 0.959** 0.950** 0.321 0.293 MBN 0.778** 0.744** 0.450 0.442 MBC/MBN −0.307 −0.279 −0.607* −0.381 侧柏
林PMBC 0.912** 0.892** −0.043 −0.095 MBN 0.681* 0.655* −0.228 0.188 MBC/MBN 0.512 0.524 0.425 −0.630* *表示在0.05水平上呈显著相关,**表示在0.01水平上呈极显著相关。
*indicates significant difference at P<0.05; **indicates extremely significant difference at P<0.01. -
[1] 丁新景, 敬如岩, 黄雅丽, 等. 基于高通量测序的4种不同树种人工林根际土壤细菌结构及多样性 [J]. 林业科学, 2018, 54(1):81−89.DING X J, JING R Y, HUANG Y L, et al. Bacterial structure and diversity of rhizosphere soil of four tree species in Yellow River Delta based on high-throughput sequencing [J]. Scientia Silvae Sinicae, 2018, 54(1): 81−89.(in Chinese) [2] 吴迪, 李良良, 张红军, 等. 马缨杜鹃的花叶凋落物配比对土壤微生物量与酶活性的影响 [J]. 西南农业学报, 2021, 34(8):1663−1667.WU D, LI L L, ZHANG H J, et al. Effects of litter proportion of flowers and leaves of Rhododendron delavayi on soil microbial quantity and enzyme activity [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(8): 1663−1667.(in Chinese) [3] 刘放, 吴明辉, 魏培洁, 等. 疏勒河源高寒草甸土壤微生物生物量碳氮变化特征 [J]. 生态学报, 2020, 40(18):6416−6426.LIU F, WU M H, WEI P J, et al. Variations of soil microbial biomass carbon and nitrogen in alpine meadow of the Shule River headwater region [J]. Acta Ecologica Sinica, 2020, 40(18): 6416−6426.(in Chinese) [4] 任江波, 李钠钾, 秦平伟, 等. 不同覆盖材料对土壤理化性状和微生物量碳氮含量的影响 [J]. 西南农业学报, 2018, 31(10):2140−2145.REN J B, LI N J, QIN P W, et al. Effect of different mulching materials on physical and chemical characteristics of soil and microbial biomass [J]. Southwest China Journal of Agricultural Sciences, 2018, 31(10): 2140−2145.(in Chinese) [5] BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome [J]. Nature, 2018, 560(7717): 233−237. doi: 10.1038/s41586-018-0386-6 [6] 罗明霞, 胡宗达, 刘兴良, 等. 川西亚高山不同林龄粗枝云杉人工林土壤微生物生物量及酶活性 [J]. 生态学报, 2021, 41(14):5632−5642.LUO M X, HU Z D, LIU X L, et al. Characteristics of soil microbial biomass carbon, nitrogen and enzyme activities in Picea asperata plantations with different ages in subalpine of western Sichuan, China [J]. Acta Ecologica Sinica, 2021, 41(14): 5632−5642.(in Chinese) [7] 刘宝, 吴文峰, 林思祖, 等. 中亚热带4种林分类型土壤微生物生物量碳氮特征及季节变化 [J]. 应用生态学报, 2019, 30(6):1901−1910.LIU B, WU W F, LIN S Z, et al. Characteristics of soil microbial biomass carbon and nitrogen and its seasonal dynamics in four mid-subtropical forests [J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1901−1910.(in Chinese) [8] 柳杨, 何先进, 侯恩庆. 鼎湖山森林演替和海拔梯度上的土壤微生物生物量碳氮变化 [J]. 生态学杂志, 2017, 36(2):287−294.LIU Y, HE X J, HOU E Q. Changes in microbial biomass carbon and nitrogen in forest floor litters and mineral soils along forest succession and altitude gradient in subtropical China [J]. Chinese Journal of Ecology, 2017, 36(2): 287−294.(in Chinese) [9] 李万年, 黄则月, 赵春梅, 等. 望天树人工幼林土壤微生物量碳氮及养分特征 [J]. 北京林业大学学报, 2020, 42(12):51−62.LI W N, HUANG Z Y, ZHAO C M, et al. Characteristics of soil microbial biomass C, N and nutrients in young plantations of Parashorea chinensis [J]. Journal of Beijing Forestry University, 2020, 42(12): 51−62.(in Chinese) [10] 董敏慧, 张良成, 文丽, 等. 松树-樟树混交林、纯林土壤微生物量碳、氮及多样性特征研究 [J]. 中南林业科技大学学报, 2017, 37(11):146−153.DONG M H, ZHANG L C, WEN L, et al. Soil microbial biomass C, N and diversity characteristics in pure and mixed forest of Pinus and Cinnamomun [J]. Journal of Central South University of Forestry & Technology, 2017, 37(11): 146−153.(in Chinese) [11] 李泽东, 李亦然, 周晓莹, 等. 3种华北石质山区造林树种抗旱性评价 [J]. 中国水土保持科学, 2019, 17(5):100−109.LI Z D, LI Y R, ZHOU X Y, et al. Drought resistance evaluation of three afforestation tree species in lithoid hilly area of North China [J]. Science of Soil and Water Conservation, 2019, 17(5): 100−109.(in Chinese) [12] 赵娜, 孟平, 张劲松, 等. 华北低丘山地不同土地利用条件下的土壤呼吸比较 [J]. 林业科学, 2014, 50(2):1−7.ZHAO N, MENG P, ZHANG J S, et al. Comparison of soil respiration under various land uses in hilly area of northern China [J]. Scientia Silvae Sinicae, 2014, 50(2): 1−7.(in Chinese) [13] 庄静静, 张劲松, 孟平, 等. 非生长季刺槐林土壤CH4通量的变化特征及其影响因子 [J]. 林业科学研究, 2016, 29(2):274−282.ZHUANG J J, ZHANG J S, MENG P, et al. Change of soil CH4 fluxes of Robinia pseudoacacia stand during non-growing season and the impact factors [J]. Forest Research, 2016, 29(2): 274−282.(in Chinese) [14] 同小娟, 张劲松, 孟平. 基于涡度相关法的森林生态系统碳交换及其控制机制 [J]. 温带林业研究, 2018, 1(2):1−9,14.TONG X J, ZHANG J S, MENG P. Carbon exchange between forest ecosystems and the atmosphere and its control mechanisms based on the eddy covariance method [J]. Journal of Temperate Forestry Research, 2018, 1(2): 1−9,14.(in Chinese) [15] 赵娜. 太行山南段低丘区不同土地利用方式土壤碳通量组成及其影响机理[D]. 北京: 中国林业科学研究院, 2014ZHAO N. The components and influence mechanism of soil carbon flux under different land use types in hilly area of southern Taihang Mountains, China[D]. Beijing: Chinese Academy of Forestry, 2014. (in Chinese) [16] 庄静静. 华北低山丘陵区刺槐林土壤甲烷通量变化特征及其影响机制[D]. 北京: 中国林业科学研究院, 2016ZHUANG J J. The characteristics and influencing mechanism of methane fluxes from Robinia pseudoacacia forest in the hilly area of North China[D]. Beijing: Chinese Academy of Forestry, 2016. (in Chinese) [17] 陈美玲, 刘鑫, 陈新峰, 等. 酸雨类型转变对杉木林土壤养分特征和微生物量碳氮的影响 [J]. 浙江农林大学学报, 2022, 39(6):1278−1288.CHEN M L, LIU X, CHEN X F, et al. Effects of acid rain type change on soil nutrient characteristics and microbial C and N in the Cunninghamia lanceolata plantation [J]. Journal of Zhejiang A & F University, 2022, 39(6): 1278−1288.(in Chinese) [18] 肖好燕, 刘宝, 余再鹏, 等. 亚热带典型林分对表层和深层土壤可溶性有机碳、氮的影响 [J]. 应用生态学报, 2016, 27(4):1031−1038.XIAO H Y, LIU B, YU Z P, et al. Effects of forest types on soil dissolved organic carbon and nitrogen in surface and deep layers in subtropical region, China [J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1031−1038.(in Chinese) [19] 李洪杰, 刘军伟, 杨林, 等. 海拔梯度模拟气候变暖对高山森林土壤微生物生物量碳氮磷的影响 [J]. 应用与环境生物学报, 2016, 22(4):599−605.LI H J, LIU J W, YANG L, et al. Effects of simulated climate warming on soil microbial biomass carbon, nitrogen and phosphorus of alpine forest [J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(4): 599−605.(in Chinese) [20] 张海燕, 张旭东, 李军, 等. 土壤微生物量测定方法概述 [J]. 微生物学杂志, 2005, 25(4):95−99.ZHANG H Y, ZHANG X D, LI J, et al. Outline of soil microbial biomass measurement methods [J]. Journal of Microbiology, 2005, 25(4): 95−99.(in Chinese) [21] 吴明辉, 瞿德业, 李婷, 等. 祁连山疏勒河源区冻土退化对土壤微生物生物量碳氮的影响 [J]. 地理科学, 2021, 41(1):177−186.WU M H, QU D Y, LI T, et al. Effects of permafrost degradation on soil microbial biomass carbon and nitrogen in the Shule River headwaters, the Qilian Mountains [J]. Scientia Geographica Sinica, 2021, 41(1): 177−186.(in Chinese) [22] 南雅芳, 郭胜利, 张彦军, 等. 坡向和坡位对小流域梯田土壤有机碳、氮变化的影响 [J]. 植物营养与肥料学报, 2012, 18(3):595−601.NAN Y F, GUO S L, ZHANG Y J, et al. Effects of slope aspect and position on soil organic carbon and nitrogen of terraces in small watershed [J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 595−601.(in Chinese) [23] 王风芹, 田丽青, 桑玉强, 等. 华北土石山区刺槐和栓皮栎人工林土壤微生物数量和微生物量碳、氮研究 [J]. 林业科学研究, 2016, 29(6):956−961.WANG F Q, TIAN L Q, SANG Y Q, et al. Studies on soil microorganism quantity and soil microbial biomass carbon and nitrogen of Robinia pseudoacacia and Quercus varaibilis plantations in North China [J]. Forest Research, 2016, 29(6): 956−961.(in Chinese) [24] 李胜蓝, 方晰, 项文化, 等. 湘中丘陵区4种森林类型土壤微生物生物量碳氮含量 [J]. 林业科学, 2014, 50(5):8−16.LI S L, FANG X, XIANG W H, et al. Soil microbial biomass carbon and nitrogen concentrations in four subtropical forests in hilly region of central Hunan Province, China [J]. Scientia Silvae Sinicae, 2014, 50(5): 8−16.(in Chinese) [25] 黄辉, 陈光水, 谢锦升, 等. 土壤微生物生物量碳及其影响因子研究进展 [J]. 湖北林业科技, 2008, 37(4):34−41. doi: 10.3969/j.issn.1004-3020.2008.04.011HUANG H, CHEN G S, XIE J S, et al. Advances on soil microbial biomass carbon and its effect factor [J]. Hubei Forestry Science and Technology, 2008, 37(4): 34−41.(in Chinese) doi: 10.3969/j.issn.1004-3020.2008.04.011