Functions of MeUGT25 in Resistance of Cassava to Bacterial Wilt Disease
-
摘要:
目的 克隆木薯中UDP依赖型糖基转移酶(UDP-glycosyltransferases, UGTs)基因MeUGT25,并进行抗枯萎病功能研究,为木薯抗病分子育种提供新的基因资源。 方法 通过RT-PCR技术从木薯叶片(SC124)中克隆MeUGT25基因。随后,利用病毒诱导的基因沉默(virus induced gene silencing, VIGS)和地毯草黄单胞菌(Xamthomonas axonopodis pv. Manihotis, Xam)侵染试验研究MeUGT25基因在木薯中的抗病功能。 结果 病菌Xam能显著诱导MeUGT25基因的表达。在3株阳性干扰植株中,qRT-PCR检测显示它们的MeUGT25基因表达量分别降低71%、70%和69%。Xam侵染试验结果表明,叶片接种Xam 6 d后,MeUGT25V-2和MeUGT25V-3植株叶片上的细菌数量相比对照明显增多,但MeUGT25V-1阳性植株的细菌统计数量和对照叶片相比没有显著差异。然而,从叶片的发病情况来看,3个干扰植株叶片上的菌斑均比对照明显。 结论 降低木薯叶片中MeUGT25基因的表达量会影响叶片抵抗Xam病菌侵染的能力,推测MeUGT25基因在木薯抗枯萎病中发挥正调控作用。 Abstract:Objective Disease resistance to Xamthomonas axonopodis pv. Manihotis (Xam) of cassava related to MeUGT25, a UDP-glycosyltransferases (UGT) gene, was studied for breeding purposes. Method MeUGT25 was cloned from cassava leaves (SC124) by RT-PCR. Subsequently, virus-induced gene silencing (VIGS) andXam infection challenge experiment were conducted to confirm the disease resistance of the plant. Result The expression of MeUGT25 was significantly induced by the presence of Xam. In 3 transgenic plants, qRT-PCR showed reductions in MeUGT25 expression by 71%, 70%, and 69%. In 6 d after an Xam−inoculation, the bacterial counts on the leaves of MeUGT25V-2 and MeUGT25V-3 plants increased significantly, but not of MeUGT25V-1. On the other hand, apparent plaques appeared on the leaves of the MeUGT25 gene silencing plants indicating the lowered MeUGT25 expression had significantly reduced the resistance of cassava to Xam infection. Conclusion Reduction of MeUGT25 expression in cassava mitigated the ability of the leaves to resist invasion by Xam suggesting a positive regulatory role of the gene played in the disease resistance. -
Key words:
- Cassava /
- MeUGT /
- biotic stress /
- VIGS /
- Xamthomonas axonopodis pv. Manihotis
-
表 1 引物序列
Table 1. Sequences of primers applied
引物名称
Primer上游引物
Forward Primer(5′-3′)下游引物
Reverse Primer(5′-3′)用途
UsageMeUGT25 gtgagtaaggttaccgaattcTTTGATTGCCCAGATCGTCG gagacgcgtgagctcggtaccCAGGCTGGTGGCTACAACGG 载体构建 qMeUGT25 CCGGAATTCTTTGATTGCCCAGATCGTCG CGGGGTACCCAGGCTGGTGGCTACAACG 荧光定量 MeEF1a TGAACCACCCTGGTCAGATTGGAA AACTTGGGCTCCTTCTCAAGCTCT 荧光定量 划线部分为上游同源臂/下游同源臂+酶切位点 。
Underline shows upstream homology arm/downstream homologous arm with restriction enzyme digestion sites. -
[1] 张鹏, 杨俊, 周文智, 等. 能源木薯高淀粉抗逆分子育种研究进展与展望 [J]. 生命科学, 2014, 26(5):465−473. doi: 10.13376/j.cbls/2014069ZHANG P, YANG J, ZHOU W Z, et al. Progress and perspective of cassava molecular breeding for bioenergy development [J]. Chinese Bulletin of Life Sciences, 2014, 26(5): 465−473.(in Chinese) doi: 10.13376/j.cbls/2014069 [2] BOURNE Y, HENRISSAT B. Glycoside hydrolases and glycosyltransferases: Families and functional modules [J]. Current Opinion in Structural Biology, 2001, 11(5): 593−600. doi: 10.1016/S0959-440X(00)00253-0 [3] PAQUETTE S, MØLLER B L, BAK S. On the origin of family 1 plant glycosyltransferases [J]. Phytochemistry, 2003, 62(3): 399−413. doi: 10.1016/S0031-9422(02)00558-7 [4] CAI J H, JOZWIAK A, HOLOIDOVSKY L, et al. Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth [J]. Molecular Plant, 2021, 14(3): 440−455. doi: 10.1016/j.molp.2020.12.018 [5] LIU Y Q, WANG Q, LIU X N, et al. pUGTdb: A comprehensive database of plant UDP-dependent glycosyltransferases [J]. Molecular Plant, 2023, 16(4): 643−646. doi: 10.1016/j.molp.2023.01.003 [6] LI Q, YU H M, MENG X F, et al. Ectopic expression of glycosyltransferase UGT76E11 increases flavonoid accumulation and enhances abiotic stress tolerance in Arabidopsis [J]. Plant Biology, 2018, 20(1): 10−19. doi: 10.1111/plb.12627 [7] WU C L, DAI J, CHEN Z S, et al. Comprehensive analysis and expression profiles of cassava UDP-glycosyltransferases (UGT) family reveal their involvement in development and stress responses in cassava [J]. Genomics, 2021, 113(5): 3415−3429. doi: 10.1016/j.ygeno.2021.08.004 [8] 黄洁, 李开绵, 叶剑秋, 等. 我国的木薯优势区域概述 [J]. 广西农业科学, 2008, 39(1):104−108.HUANG J, LI K M, YE J Q, et al. A summary review of dominant regions of cassava growing in China [J]. Guangxi Agricultural Sciences, 2008, 39(1): 104−108.(in Chinese) [9] CAMPBELL J, DAVIES G, et al. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities[J]. The Biochemical Journal, 1998, 329 (Pt 3): 719. [10] JACKSON R G, KOWALCZYK M, LI Y, et al. Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: Phenotypic characterisation of transgenic lines [J]. The Plant Journal, 2002, 32(4): 573−583. doi: 10.1046/j.1365-313X.2002.01445.x [11] HAYASHI K I. The interaction and integration of auxin signaling components [J]. Plant and Cell Physiology, 2012, 53(6): 965−975. doi: 10.1093/pcp/pcs035 [12] POPPENBERGER B, FUJIOKA S, SOENO K, et al. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(42): 15253−15258. [13] CHEN T T, LIU F F, XIAO D W, et al. The Arabidopsis UDP-glycosyltransferase75B1, conjugates abscisic acid and affects plant response to abiotic stresses [J]. Plant Molecular Biology, 2020, 102(4): 389−401. [14] DONG T, XU Z Y, PARK Y, et al. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis [J]. Plant Physiology, 2014, 165(1): 277−289. doi: 10.1104/pp.114.239210 [15] LIU Z, YAN J P, LI D K, et al. UDP-Glucosyltransferase71C5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis [J]. Plant Physiology, 2015, 167(4): 1659−1670. doi: 10.1104/pp.15.00053 [16] JONES J D G, DANGL J L. The plant immune system [J]. Nature, 2006, 444(7117): 323−329. doi: 10.1038/nature05286 [17] VLOT A C, DEMPSEY D A, KLESSIG D F. Salicylic Acid, a multifaceted hormone to combat disease [J]. Annual Review of Phytopathology, 2009, 47: 177−206. doi: 10.1146/annurev.phyto.050908.135202 [18] CHEN L, WANG W S, WANG T, et al. Methyl salicylate glucosylation regulates plant defense signaling and systemic acquired resistance [J]. Plant Physiology, 2019, 180(4): 2167−2181. doi: 10.1104/pp.19.00091 [19] CHAE E, TRAN D T N, WEIGEL D. Cooperation and conflict in the plant immune system [J]. PLoS Pathogens, 2016, 12(3): e1005452. doi: 10.1371/journal.ppat.1005452 [20] PASTORCZYK-SZLENKIER M, BEDNAREK P. UGT76B1 controls the growth-immunity trade-off during systemic acquired resistance [J]. Molecular Plant, 2021, 14(4): 544−546. doi: 10.1016/j.molp.2021.03.012 [21] VON SAINT PAUL V, ZHANG W, KANAWATI B, et al. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence [J]. The Plant Cell, 2011, 23(11): 4124−4145. doi: 10.1105/tpc.111.088443 [22] KANNANGARA R, MOTAWIA M S, HANSEN N K K, et al. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava [J]. The Plant Journal, 2011, 68(2): 287−301. doi: 10.1111/j.1365-313X.2011.04695.x [23] MUÑOZ-BODNAR A, PEREZ-QUINTERO A L, GOMEZ-CANO F, et al. RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis [J]. Plant Cell Reports, 2014, 33(11): 1901−1912. doi: 10.1007/s00299-014-1667-7 [24] YAN Y, HE X Y, HU W, et al. Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense response against Xanthomonas axonopodis pv. manihotis [J]. Plant Cell Reports, 2018, 37(6): 887−900. doi: 10.1007/s00299-018-2276-7 [25] 宋震, 李中安, 周常勇. 病毒诱导的基因沉默(VIGS)研究进展 [J]. 园艺学报, 2014, 41(9):1885−1894. doi: 10.16420/j.issn.0513-353x.2014.09.004SONG Z, LI Z A, ZHOU C Y. Research advances of virus-induced gene silencing(VIGS) [J]. Acta Horticulturae Sinica, 2014, 41(9): 1885−1894.(in Chinese) doi: 10.16420/j.issn.0513-353x.2014.09.004 [26] GEORGE THOMPSON A M, IANCU C V, NEET K E, et al. Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from Arabidopsis thaliana [J]. Scientific Reports, 2017, 7: 46629. doi: 10.1038/srep46629 [27] 叶威, 骆秋娴, 蔡美琪, 等. 木薯UDP依赖型糖基转移酶14基因在木薯抗病性中的功能研究 [J]. 热带作物学报, 2022, 43(7):1322−1327. doi: 10.3969/j.issn.1000-2561.2022.07.002YE W, LUO Q X, CAI M Q, et al. Function of MeUGT14 gene in cassava under biotic stress [J]. Chinese Journal of Tropical Crops, 2022, 43(7): 1322−1327.(in Chinese) doi: 10.3969/j.issn.1000-2561.2022.07.002 [28] ZENG J, WANG C, CHEN X, et al. The lycopene β-cyclase plays a significant role in provitamin A biosynthesis in wheat endosperm [J]. BMC Plant Biology, 2015, 15: 112. doi: 10.1186/s12870-015-0514-5