• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木薯UDP依赖型糖基转移酶基因MeUGT25在抗细菌性枯萎病中的功能研究

曾坚 陈颍桐 蔡美琪 李丽珍 林墁 刘思雯 刘博婷 胡伟 曾力旺

曾坚,陈颍桐,蔡美琪,等. 木薯UDP依赖型糖基转移酶基因MeUGT25在抗细菌性枯萎病中的功能研究 [J]. 福建农业学报,2023,38(12):1453−1458 doi: 10.19303/j.issn.1008-0384.2023.12.009
引用本文: 曾坚,陈颍桐,蔡美琪,等. 木薯UDP依赖型糖基转移酶基因MeUGT25在抗细菌性枯萎病中的功能研究 [J]. 福建农业学报,2023,38(12):1453−1458 doi: 10.19303/j.issn.1008-0384.2023.12.009
ZENG J, CHEN Y T, CAI M Q, et al. Functions of MeUGT25 in Resistance of Cassava to Bacterial Wilt Disease [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1453−1458 doi: 10.19303/j.issn.1008-0384.2023.12.009
Citation: ZENG J, CHEN Y T, CAI M Q, et al. Functions of MeUGT25 in Resistance of Cassava to Bacterial Wilt Disease [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1453−1458 doi: 10.19303/j.issn.1008-0384.2023.12.009

木薯UDP依赖型糖基转移酶基因MeUGT25在抗细菌性枯萎病中的功能研究

doi: 10.19303/j.issn.1008-0384.2023.12.009
基金项目: 广东省基础与应用基础研究基金(2023A1515010336、2021A1515011236);广东省普通高校重点领域专项(2022ZDZX4047);韶关学院重点项目(SZ2022KJ05);国家自然科学基金(31901537);韶关学院博士启动项目(99000615);国家级大学生创新创业训练计划项目(202310576009)
详细信息
    作者简介:

    曾坚(1987 —),男,副教授,主要从事植物基因功能研究,E-mail:zengjian@sgu.edu.cn

    通讯作者:

    曾力旺(1987 —),女,助理研究员,主要从事植物基因分子生物学研究,E-mail:zengliwang@163.com

  • 中图分类号: S533

Functions of MeUGT25 in Resistance of Cassava to Bacterial Wilt Disease

  • 摘要:   目的  克隆木薯中UDP依赖型糖基转移酶(UDP-glycosyltransferases, UGTs)基因MeUGT25,并进行抗枯萎病功能研究,为木薯抗病分子育种提供新的基因资源。  方法  通过RT-PCR技术从木薯叶片(SC124)中克隆MeUGT25基因。随后,利用病毒诱导的基因沉默(virus induced gene silencing, VIGS)和地毯草黄单胞菌(Xamthomonas axonopodis pv. Manihotis, Xam)侵染试验研究MeUGT25基因在木薯中的抗病功能。  结果  病菌Xam能显著诱导MeUGT25基因的表达。在3株阳性干扰植株中,qRT-PCR检测显示它们的MeUGT25基因表达量分别降低71%、70%和69%。Xam侵染试验结果表明,叶片接种Xam 6 d后,MeUGT25V-2和MeUGT25V-3植株叶片上的细菌数量相比对照明显增多,但MeUGT25V-1阳性植株的细菌统计数量和对照叶片相比没有显著差异。然而,从叶片的发病情况来看,3个干扰植株叶片上的菌斑均比对照明显。  结论  降低木薯叶片中MeUGT25基因的表达量会影响叶片抵抗Xam病菌侵染的能力,推测MeUGT25基因在木薯抗枯萎病中发挥正调控作用。
  • 图  1  MeUGT25基因在Xam处理下的表达分析

    *表示与0 d差异显著(P<0.05)。

    Figure  1.  Expression of MeUGT25 under Xam treatment

    * indicates significant difference from control (0 d) (P<0.05).

    图  2  pTRV2-MeUGT25干扰载体构建

    A:干扰片段克隆;B:pTRV2载体酶切;C:pTRV2-MeUGT25双酶切。

    Figure  2.  Construction of pTRV2-MeUGT25 vector

    A: Cloned fragment of MeUGT25; B: digested pTRV2 vector; C: verified pTRV2-MeUGT25 vector by digestion.

    图  3  叶片中MeUGT25基因被沉默后的表达水平

    *表示与对照(TRV)差异显著(P<0.05)。TRV: 对照植株;MeUGT25V-1、MeUGT25V-2、MeUGT25V-3:不同干扰植株。

    Figure  3.  Expression of MeUGT25 after VIGS

    * indicates significant difference from control (TRV) (P<0.05); TRV: control plant; MeUGT25V-1, MeUGT25V-2, and MeUGT25V-3: different silenced plants.

    图  4  MeUGT25基因被沉默后发病叶片中细菌数量的变化情况

    不同小写字母表示处理间差异显著(P<0.05)。

    Figure  4.  Bacteria counts in cassava leaves transformed with pTRV-MeUGT25

    Different lowercase letters indicate significant difference among treatments (P<0.05).

    图  5  MeUGT25基因被沉默后接种细菌的表型

    Figure  5.  Symptoms on Xam-infected cassava leaves

    表  1  引物序列

    Table  1.   Sequences of primers applied

    引物名称
    Primer
    上游引物
    Forward Primer(5′-3′)
    下游引物
    Reverse Primer(5′-3′)
    用途
    Usage
    MeUGT25gtgagtaaggttaccgaattcTTTGATTGCCCAGATCGTCGgagacgcgtgagctcggtaccCAGGCTGGTGGCTACAACGG载体构建
    qMeUGT25CCGGAATTCTTTGATTGCCCAGATCGTCGCGGGGTACCCAGGCTGGTGGCTACAACG荧光定量
    MeEF1aTGAACCACCCTGGTCAGATTGGAAAACTTGGGCTCCTTCTCAAGCTCT荧光定量
    划线部分为上游同源臂/下游同源臂+酶切位点 。
    Underline shows upstream homology arm/downstream homologous arm with restriction enzyme digestion sites.
    下载: 导出CSV
  • [1] 张鹏, 杨俊, 周文智, 等. 能源木薯高淀粉抗逆分子育种研究进展与展望 [J]. 生命科学, 2014, 26(5):465−473. doi: 10.13376/j.cbls/2014069

    ZHANG P, YANG J, ZHOU W Z, et al. Progress and perspective of cassava molecular breeding for bioenergy development [J]. Chinese Bulletin of Life Sciences, 2014, 26(5): 465−473.(in Chinese) doi: 10.13376/j.cbls/2014069
    [2] BOURNE Y, HENRISSAT B. Glycoside hydrolases and glycosyltransferases: Families and functional modules [J]. Current Opinion in Structural Biology, 2001, 11(5): 593−600. doi: 10.1016/S0959-440X(00)00253-0
    [3] PAQUETTE S, MØLLER B L, BAK S. On the origin of family 1 plant glycosyltransferases [J]. Phytochemistry, 2003, 62(3): 399−413. doi: 10.1016/S0031-9422(02)00558-7
    [4] CAI J H, JOZWIAK A, HOLOIDOVSKY L, et al. Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth [J]. Molecular Plant, 2021, 14(3): 440−455. doi: 10.1016/j.molp.2020.12.018
    [5] LIU Y Q, WANG Q, LIU X N, et al. pUGTdb: A comprehensive database of plant UDP-dependent glycosyltransferases [J]. Molecular Plant, 2023, 16(4): 643−646. doi: 10.1016/j.molp.2023.01.003
    [6] LI Q, YU H M, MENG X F, et al. Ectopic expression of glycosyltransferase UGT76E11 increases flavonoid accumulation and enhances abiotic stress tolerance in Arabidopsis [J]. Plant Biology, 2018, 20(1): 10−19. doi: 10.1111/plb.12627
    [7] WU C L, DAI J, CHEN Z S, et al. Comprehensive analysis and expression profiles of cassava UDP-glycosyltransferases (UGT) family reveal their involvement in development and stress responses in cassava [J]. Genomics, 2021, 113(5): 3415−3429. doi: 10.1016/j.ygeno.2021.08.004
    [8] 黄洁, 李开绵, 叶剑秋, 等. 我国的木薯优势区域概述 [J]. 广西农业科学, 2008, 39(1):104−108.

    HUANG J, LI K M, YE J Q, et al. A summary review of dominant regions of cassava growing in China [J]. Guangxi Agricultural Sciences, 2008, 39(1): 104−108.(in Chinese)
    [9] CAMPBELL J, DAVIES G, et al. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities[J]. The Biochemical Journal, 1998, 329 (Pt 3): 719.
    [10] JACKSON R G, KOWALCZYK M, LI Y, et al. Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: Phenotypic characterisation of transgenic lines [J]. The Plant Journal, 2002, 32(4): 573−583. doi: 10.1046/j.1365-313X.2002.01445.x
    [11] HAYASHI K I. The interaction and integration of auxin signaling components [J]. Plant and Cell Physiology, 2012, 53(6): 965−975. doi: 10.1093/pcp/pcs035
    [12] POPPENBERGER B, FUJIOKA S, SOENO K, et al. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(42): 15253−15258.
    [13] CHEN T T, LIU F F, XIAO D W, et al. The Arabidopsis UDP-glycosyltransferase75B1, conjugates abscisic acid and affects plant response to abiotic stresses [J]. Plant Molecular Biology, 2020, 102(4): 389−401.
    [14] DONG T, XU Z Y, PARK Y, et al. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis [J]. Plant Physiology, 2014, 165(1): 277−289. doi: 10.1104/pp.114.239210
    [15] LIU Z, YAN J P, LI D K, et al. UDP-Glucosyltransferase71C5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis [J]. Plant Physiology, 2015, 167(4): 1659−1670. doi: 10.1104/pp.15.00053
    [16] JONES J D G, DANGL J L. The plant immune system [J]. Nature, 2006, 444(7117): 323−329. doi: 10.1038/nature05286
    [17] VLOT A C, DEMPSEY D A, KLESSIG D F. Salicylic Acid, a multifaceted hormone to combat disease [J]. Annual Review of Phytopathology, 2009, 47: 177−206. doi: 10.1146/annurev.phyto.050908.135202
    [18] CHEN L, WANG W S, WANG T, et al. Methyl salicylate glucosylation regulates plant defense signaling and systemic acquired resistance [J]. Plant Physiology, 2019, 180(4): 2167−2181. doi: 10.1104/pp.19.00091
    [19] CHAE E, TRAN D T N, WEIGEL D. Cooperation and conflict in the plant immune system [J]. PLoS Pathogens, 2016, 12(3): e1005452. doi: 10.1371/journal.ppat.1005452
    [20] PASTORCZYK-SZLENKIER M, BEDNAREK P. UGT76B1 controls the growth-immunity trade-off during systemic acquired resistance [J]. Molecular Plant, 2021, 14(4): 544−546. doi: 10.1016/j.molp.2021.03.012
    [21] VON SAINT PAUL V, ZHANG W, KANAWATI B, et al. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence [J]. The Plant Cell, 2011, 23(11): 4124−4145. doi: 10.1105/tpc.111.088443
    [22] KANNANGARA R, MOTAWIA M S, HANSEN N K K, et al. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava [J]. The Plant Journal, 2011, 68(2): 287−301. doi: 10.1111/j.1365-313X.2011.04695.x
    [23] MUÑOZ-BODNAR A, PEREZ-QUINTERO A L, GOMEZ-CANO F, et al. RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis [J]. Plant Cell Reports, 2014, 33(11): 1901−1912. doi: 10.1007/s00299-014-1667-7
    [24] YAN Y, HE X Y, HU W, et al. Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense response against Xanthomonas axonopodis pv. manihotis [J]. Plant Cell Reports, 2018, 37(6): 887−900. doi: 10.1007/s00299-018-2276-7
    [25] 宋震, 李中安, 周常勇. 病毒诱导的基因沉默(VIGS)研究进展 [J]. 园艺学报, 2014, 41(9):1885−1894. doi: 10.16420/j.issn.0513-353x.2014.09.004

    SONG Z, LI Z A, ZHOU C Y. Research advances of virus-induced gene silencing(VIGS) [J]. Acta Horticulturae Sinica, 2014, 41(9): 1885−1894.(in Chinese) doi: 10.16420/j.issn.0513-353x.2014.09.004
    [26] GEORGE THOMPSON A M, IANCU C V, NEET K E, et al. Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from Arabidopsis thaliana [J]. Scientific Reports, 2017, 7: 46629. doi: 10.1038/srep46629
    [27] 叶威, 骆秋娴, 蔡美琪, 等. 木薯UDP依赖型糖基转移酶14基因在木薯抗病性中的功能研究 [J]. 热带作物学报, 2022, 43(7):1322−1327. doi: 10.3969/j.issn.1000-2561.2022.07.002

    YE W, LUO Q X, CAI M Q, et al. Function of MeUGT14 gene in cassava under biotic stress [J]. Chinese Journal of Tropical Crops, 2022, 43(7): 1322−1327.(in Chinese) doi: 10.3969/j.issn.1000-2561.2022.07.002
    [28] ZENG J, WANG C, CHEN X, et al. The lycopene β-cyclase plays a significant role in provitamin A biosynthesis in wheat endosperm [J]. BMC Plant Biology, 2015, 15: 112. doi: 10.1186/s12870-015-0514-5
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  964
  • HTML全文浏览量:  169
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-21
  • 修回日期:  2023-10-11
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2023-12-28

目录

    /

    返回文章
    返回