Control on Maize Stalk Rot and Effects on Soil Microbes of Paenibacillus polymyxa
-
摘要:
目的 探明多粘类芽孢杆菌NPDY05-8灌施土壤后对玉米茎基腐病的防治效果,及该菌在土壤中定植情况和对土壤的细菌和真菌等微生物群落的影响。 方法 利用Illumina MiSeq 高通量测序技术,以未灌施菌株NPDY05-8和种植花生轮作的土壤为对照,对灌施多粘类芽孢杆菌NPDY05-8试验地土壤的细菌及真菌群落组成结构进行研究分析。 结果 该菌株对玉米茎基腐病的田间防治效果在2021年达90.92%,2022年达95.68%,显著优于化学药剂的防效。土壤菌群分析结果显示菌株NPDY05-8能够在土壤中定植,且长期存在于土壤当中。施用菌株NPDY05-8一年Y1和30日Y2的土壤细菌多样性OTUS分别为1 096个和1 149个,均高于未施用菌株的土壤Y3的973个及轮作土壤的941个;赤霉菌属的丰度Y1为4.15%、Y2为8.76%,均低于未施用菌株的土壤Y3的17.18%;镰刀菌属的丰度Y1为0.80%、Y2为1.12%,均低于未施用菌株的土壤Y3的2.17%;施用菌株一年的土壤与施用菌株30日的土壤在细菌和真菌水平的相关性指数高,距离最近。 结论 灌施菌株NPDY05-8能改变土壤的真菌及细菌的种群结构,控制有害真菌,达到持久改良土壤和防治土传性真菌病害的目的。 Abstract:Objective Control on maize stalk rot and effects on soil microbial communities by the addition ofPaenibacillus polymyxa in soil were studied. Method On a peanut rotational cultivation field, composition and structure of the microbial communities in the soil were determined using the illumina MiSeq high-throughput sequencing technique to compare with those on the land incorporated with P. polymyxa NPDY05-8. Result The disease control on the maize stalk rot by addition of NPDY05-8 in soil reached 90.92% in 2021 and 96.58% in 2022 as shown by the experiment. Those were significantly more effective than what was achieved by using chemical treatments. NPDY05-8 continued to present in soil after the colonization in a year (Y1) with an OTU of 1 096 and in 30-d (Y2) of 1 149, which were significantly higher than control (Y3) of 941. Meanwhile, the population of Gibberella at 4.15% in Y1 and 8.76% in Y2 were significantly lower than that in Y3 at 17.18%; and that of Fusarium at 0.80% in Y1 and 1.12% in Y2, significantly lower than that in Y3 at 2.17%. Conclusion Addition of NPDY05-8 in maize field altered the microbial community in the soil that significantly provided a lasting control effect on the pathogenic fungi for maize farming. -
表 1 多粘类芽孢杆菌NPDY05-8对玉米茎基腐病的田间防效
Table 1. Field efficacy of NPDY05-8 against maize stalk rot
年份 Year 药剂 Pesticide 病情指数 Disease indexes/% 防治效果 Prevention effect/% 2021 菌株NPDY05-8 Strain NPDY05-8 3.23 ± 0.34 a 90.92 ± 0.65 a l5%乙蒜素可湿性粉剂 15% Ethylicin wettable powder 16.09 ± 0.45 b 55.71 ± 1.14 b 15%多菌灵可湿性粉剂 15% Carbendazim wettable powder 16.39 ± 1.53 b 54.90 ± 8.51 b 清水Clean water(CK) 36.68 ± 0.68 c 2022 菌株NPDY05-8 Strain NPDY05-8 1.04 ± 0.17 a 95.68 ± 0.71 a l5%乙蒜素可湿性粉剂 15% Ethylicin wettable powder 11.69 ± 2.05 b 51.63 ± 8.50 b 15%多菌灵可湿性粉剂 15% Carbendazim wettable powder 12.21 ± 2.83 b 49.49 ± 11.71 b 清水 Clean water(CK) 24.17 ± 0.93 c 同列数据后不同小写字母表示同一年份同一指标不同处理间差异显著(P<0.05)。
Data with different lowercase letters on same column indicate significant differences between treatments on same indicator in same year (P<0.05).表 2 不同处理土壤样本主要细菌在门水平上不同种群的相对丰度
Table 2. Relative abundances of microbes at phylum level in soil
项目 Item Y1/% Y2/% Y3/% Y4/% 变形菌门 Proteobacteria 41.18 ± 1.43 a 31.52 ± 0.58 a 42.31 ± 2.33 a 30.57 ± 1.03 a 酸杆菌门 Acidobacteria 21.34 ± 1.05 ab 15.90 ± 1.41 b 17.34 ± 2.12 ab 28.05 ±1.23 a 放线细菌 Actinobacteria 8.25 ± 1.33 b 12.27 ± 2.56 ab 13.75 ±0.88 a 7.07 ±0.76 b 未分类的细菌 unclassified_Bacteria 11.08 ± 0.89 a 15.67 ± 1.36 a 12.22 ±1.18 a 8.87 ± 0.79 b 芽单胞菌门 Gemmatimonadetes 5.18 ± 0.66 b 3.10 ± 0.53 bc 2.92 ± 0.36 c 10.38 ± 1.22 a 拟杆菌门 Bacteroidetes 3.53 ± 0.53 a 3.45 ± 0.80 a 2.18 ± 0.69 b 3.95 ± 1.03 a 无中文名 Candidatus_Saccharibacteria 2.47 ± 0.26 a 1.99 ± 0.15 a 2.69 ± 1.01 a 0.84 ± 0.25 b 厚壁菌门 Firmicutes 1.85 ± 0.38 b 2.95 ± 0.09 a 0.42 ± 0.08 c 2.14 ± 0.08 b 绿弯菌门 Chloroflexi 1.80 ± 0.40 c 5.75 ± 0.70 a 3.77 ± 0.66 ab 1.57 ± 0.58 c 疣微菌门 Verrucomicrobia 1.24 ± 0.36 b 2.40 ± 0.55 ab 0.57 ± 0.06 c 3.52 ± 0.58 a 浮霉菌门 Planctomycetes 0.77 ± 0.19 b 2.43 ± 0.29 a 0.92 ± 0.08 b 1.15 ± 0.04 b 装甲菌门 Armatimonadetes 0.59 ± 0.05 a 0.34 ± 0.02 a 0.15 ± 0.01 a 0.47 ± 0.19 a 硝化螺旋菌门 Nitrospirae 0.35 ± 0.02 b 0.51 ± 0.04 b 0.35 ± 0.07 b 1.08 ± 0.08 a 蓝藻门 Cyanobacteria 0.19 ± 0.01 b 1.11 ± 0.18 a 0.002 ± 0.01 c 0.09 ± 0.02 b 同行数据后不同小写字母表示不同处理间差异显著(P<0.05)。表3、4同。
Data with different lowercase letters on same row indicate significant differences between treatments (P<0.05). The same as table3-4.表 3 不同处理土壤样本主要真菌在门水平上不同种群的相对丰度
Table 3. Relative abundance of major fungi at phylum level in soil under treatments
项目 Item Y1/% Y2/% Y3/% Y4/% 子囊菌门 Ascomycota 33.53 ± 1.57 d 52.99 ± 2.11 c 67.93 ± 1.93 a 62.26 ± 1.93 b 担子菌门 Basidiomycota 56.28 ± 2.67 a 32.00 ± 2.22 b 14.44 ± 2.50 c 30.54 ±2.27 b 被孢菌门 Mortierellomycota 8.33 ± 3.84 b 10.06 ± 1.66 a 11.24 ± 1.49 a 3.98 ± 0.85 b 壶菌门 Chytridiomycota 0.15 ± 0.06 c 1.94 ± 0.09 a 1.55 ± 0.19 b 0.36 ± 0.06 c 毛霉门 Mucoromycota 0.05 ± 0.03 c 0.26 ± 0.10 b 1.02 ± 0.15 a 0.09 ± 0.02 c 表 4 不同处理样本的类芽孢杆菌在不同分类水平上的丰度
Table 4. Abundance of bacteria at different classification levels in soil under treatments
项目 Item Y1/% Y2/% Y3/% Y4/% 厚壁菌门 Firmicutes 1.85 ± 0.38 b 2.95 ± 0.09 a 0.42 ± 0.08 c 2.14 ± 0.08 b 芽孢杆菌纲 Bacilli 1.58 ± 0.26 a 1.91 ± 0.33 a 0.41 ± 0.12 b 1.28 ± 0.45 a 芽孢杆菌目 Bacillales 1.58 ± 0.26 a 1.91 ± 0.33 a 0.41 ± 0.12 b 1.28 ± 0.45 a 芽孢杆菌科 Bacillaceae 0.40 ± 0.09 a 0.43 ± 0.09 a 0.02 ± 0 b 0.02 ± 0 b 类芽孢杆菌属 Paenibacillus 0.12 ± 0.01 b 0.26 ± 0.01 a 0.02 ± 0 c 0.02 ± 0 c -
[1] 樊伟民. 玉米茎腐病的研究现状及防治策略 [J]. 黑龙江农业科学, 2022(3):76−80.FAN W M. Research status and control strategies of maize stem rot [J]. Heilongjiang Agricultural Sciences, 2022(3): 76−80.(in Chinese) [2] 吴之涛, 杨克泽, 马金慧, 等. 玉米茎基腐病研究进展 [J]. 安徽农业科学, 2018, 46(22):5−7. doi: 10.3969/j.issn.0517-6611.2018.22.002WU Z T, YANG K Z, MA J H, et al. Research progress on stalk rot of maize [J]. Journal of Anhui Agricultural Sciences, 2018, 46(22): 5−7.(in Chinese) doi: 10.3969/j.issn.0517-6611.2018.22.002 [3] 吴海燕, 孙淑荣, 范作伟, 等. 玉米茎腐病研究现状与防治对策 [J]. 玉米科学, 2007, 15(4):129−132.WU H Y, SUN S R, FAN Z W, et al. Research condition and prevention countermeasures of maize stalk rot [J]. Journal of Maize Sciences, 2007, 15(4): 129−132.(in Chinese) [4] 沈广爽, 于淑晶, 郭宁, 等. 玉米茎基腐病防治研究进展 [J]. 农药, 2021, 60(4):235−238.SHEN G S, YU S J, GUO N, et al. Research progress on control of maize stalk rot [J]. Agrochemicals, 2021, 60(4): 235−238.(in Chinese) [5] 段灿星, 曹言勇, 董怀玉, 等. 玉米种质资源抗腐霉茎腐病和镰孢茎腐病精准鉴定 [J]. 中国农业科学, 2022, 55(2):265−279. doi: 10.3864/j.issn.0578-1752.2022.02.003DUAN C X, CAO Y Y, DONG H Y, et al. Precise characterization of maize germplasm for resistance to Pythium stalk rot and Gibberella stalk rot [J]. Scientia Agricultura Sinica, 2022, 55(2): 265−279.(in Chinese) doi: 10.3864/j.issn.0578-1752.2022.02.003 [6] 郑俊强, 高增贵, 庄敬华, 等. 玉米土传病害生物防治的研究进展 [J]. 玉米科学, 2005, 13(1):111−114,118.ZHENG J Q, GAO Z G, ZHUANG J H, et al. Progress of studies on bio-control of maize soil borne disease [J]. Journal of Maize Sciences, 2005, 13(1): 111−114,118.(in Chinese) [7] 赵阿娜, 丁万隆. 利用拮抗微生物防治中药材土传病害研究进展 [J]. 中国中药杂志, 2005, 30(7):485−487. doi: 10.3321/j.issn:1001-5302.2005.07.001ZHAO A N, DING W L. Progress on the control of medicinal plants soil-borne disease by anti-microorganism [J]. China Journal of Chinese Materia Medica, 2005, 30(7): 485−487.(in Chinese) doi: 10.3321/j.issn:1001-5302.2005.07.001 [8] 沙月霞, 邢敏, 李明洋, 等. 微生物菌剂拌土对玉米茎基腐病的预防和促生效果 [J]. 安徽农业科学, 2021, 49(4):141−144,154.SHA Y X, XING M, LI M Y, et al. Preventive and promoting efficacy of microbial agents mixed with soil against the maize stem basal rot in Ningxia [J]. Journal of Anhui Agricultural Sciences, 2021, 49(4): 141−144,154.(in Chinese) [9] 张亮, 盛浩, 袁红, 等. 多粘类芽孢杆菌LRS-1对辣椒疫霉病害根际土壤细菌多样性的影响 [J]. 土壤通报, 2020, 51(2):358−364.ZHANG L, SHENG H, YUAN H, et al. Effects of Paenibacillus polymyxa LRS-1 on rhizosphere soil bacteria diversity affected by Phytophthora disease of pepper [J]. Chinese Journal of Soil Science, 2020, 51(2): 358−364.(in Chinese) [10] 孙光忠, 刘元明, 彭超美, 等. 多粘类芽孢杆菌对小麦赤霉病田间防治效果研究 [J]. 农药科学与管理, 2016, 37(7):45−47. doi: 10.3969/j.issn.1002-5480.2016.07.016SUN G Z, LIU Y M, PENG C M, et al. Study on the field control effect of Bacillus polymyxa against wheat scab [J]. Pesticide Science and Administration, 2016, 37(7): 45−47.(in Chinese) doi: 10.3969/j.issn.1002-5480.2016.07.016 [11] 刘振华, 井长勤, 周晨妍. 生防细菌多粘类芽孢杆菌多糖研究进展 [J]. 上海农业学报, 2015, 31(4):146−150.LIU Z H, JING C Q, ZHOU C Y. Research progress of polysaccharide from biocontrol bacterium Paenibacillus polymyxa [J]. Acta Agriculturae Shanghai, 2015, 31(4): 146−150.(in Chinese) [12] 王刘庆, 王秋影, 廖美德. 多粘类芽孢杆菌生物特性及其机理研究进展 [J]. 中国农学通报, 2013, 29(11):158−163. doi: 10.11924/j.issn.1000-6850.2012-2504WANG L Q, WANG Q Y, LIAO M D. The progress of biological properties and mechanisms of Paenibacillus polymyxa [J]. Chinese Agricultural Science Bulletin, 2013, 29(11): 158−163.(in Chinese) doi: 10.11924/j.issn.1000-6850.2012-2504 [13] RYU C M, KIM J, CHOI O, et al. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame [J]. Biological Control, 2006, 39(3): 282−289. doi: 10.1016/j.biocontrol.2006.04.014 [14] 韩俊华, 陈大欢, 黄继翔. 响应曲面法优化多粘类芽孢杆菌HT16产生抗菌蛋白的培养基 [J]. 食品工业科技, 2014, 35(13):262−265,270. doi: 10.13386/j.issn1002-0306.2014.13.048HAN J H, CHEN D H, HUANG J X. Optimization of culture medium for antifungal protein production by paenibacillus polymaxa HT16 using response surface methodology [J]. Science and Technology of Food Industry, 2014, 35(13): 262−265,270.(in Chinese) doi: 10.13386/j.issn1002-0306.2014.13.048 [15] CHOI S K, PARK S Y, KIM R, et al. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681 [J]. Biochemical and Biophysical Research Communications, 2008, 365(1): 89−95. doi: 10.1016/j.bbrc.2007.10.147 [16] 李正辉, 向晶晶, 陈婧鸿, 等. 小麦赤霉病拮抗菌的分离与鉴定 [J]. 麦类作物学报, 2007, 27(1):149−152. doi: 10.7606/j.issn.1009-1041.2007.01.037LI Z H, XIANG J J, CHEN J H, et al. Isolation and identification of actinomycete against Fusarium graminearum schw [J]. Journal of Triticeae Crops, 2007, 27(1): 149−152.(in Chinese) doi: 10.7606/j.issn.1009-1041.2007.01.037 [17] 张忠良, 刘东平, 潘培培, 等. 多粘类芽孢杆菌(Paenibacillus polymyxa)K18-5不同悬浮液处理对黄瓜枯萎病抑制作用的影响 [J]. 河南农业大学学报, 2019, 53(5):724−730.ZHANG Z L, LIU D P, PAN P P, et al. Influence of inhibition effects of different suspensions treatments of Paenibacillus polymyxa (K18-5) against Fusarium wilt of cucumber [J]. Journal of Henan Agricultural University, 2019, 53(5): 724−730.(in Chinese) [18] 田宇曦, 闵勇, 杨自文, 等. 多粘类芽孢杆菌研究进展 [J]. 湖北农业科学, 2017, 56(18):3401−3404,3409. doi: 10.14088/j.cnki.issn0439-8114.2017.18.001TIAN Y X, MIN Y, YANG Z W, et al. Research progress of Paenibacillus polymyxa [J]. Hubei Agricultural Sciences, 2017, 56(18): 3401−3404,3409.(in Chinese) doi: 10.14088/j.cnki.issn0439-8114.2017.18.001 [19] 周涛, 满文曾, 吴晓营, 等. 广谱抑菌性多粘类芽孢杆菌的筛选及其细菌素理化特性 [J]. 食品工业科技, 2019, 40(24):99−103,109. doi: 10.13386/j.issn1002-0306.2019.24.017ZHOU T, MAN W Z, WU X Y, et al. Screening of broad-spectrum antibacterial Paenibacillus polymyxa and physicochemical properties of its bacteriocin [J]. Science and Technology of Food Industry, 2019, 40(24): 99−103,109.(in Chinese) doi: 10.13386/j.issn1002-0306.2019.24.017 [20] 申顺善, 张涛, 王娟, 等. 多粘类芽孢杆菌HK18-8对辣椒炭疽病菌的抑制作用及其定殖能力 [J]. 园艺学报, 2019, 46(3):499−507.SHEN S S, ZHANG T, WANG J, et al. Antifungal activity of Paenibacillus polymyxa HK18-8 against pepper anthracnose and its colonization ability [J]. Acta Horticulturae Sinica, 2019, 46(3): 499−507.(in Chinese) [21] 张淑梅, 沙长青, 赵晓宇, 等. 一株抗真菌内生多粘芽孢杆菌的分离鉴定及对水稻恶苗病菌的抑制作用 [J]. 中国生物工程杂志, 2010, 30(2):84−88.ZHANG S M, SHA C Q, ZHAO X Y, et al. Identification of an endophytic Paenibacillus polymyxa strain producing antifungal protein and the inhibition to Fusarium moniliforme causing rice bakanae disease [J]. China Biotechnology, 2010, 30(2): 84−88.(in Chinese) [22] 王笑颖, 孟成生, 雷白时. 大丽轮枝菌拮抗细菌多粘芽孢杆菌7-4菌株的筛选与鉴定 [J]. 湖北农业科学, 2011, 50(9):1797−1799,1825.WANG X Y, MENG C S, LEI B S. Screening and identification of antagonistic bacterium strain 7-4 against Verticillium dahliae [J]. Hubei Agricultural Sciences, 2011, 50(9): 1797−1799,1825.(in Chinese) [23] 张亮, 向陈艳, 袁红, 等. 多粘类芽孢杆菌LRS-1对番茄青枯病害根际土壤细菌群落的影响 [J]. 湖南农业科学, 2021(7):1−6.ZHANG L, XIANG C Y, YUAN H, et al. Effects of Paenibacillus polymyxa LRS-1 on bacteria community in rhizosphere soil of tomato bacterial wilt [J]. Hunan Agricultural Sciences, 2021(7): 1−6.(in Chinese) [24] 陈雪丽, 王光华, 金剑, 等. 两株芽孢杆菌对黄瓜和番茄根际土壤微生物群落结构影响 [J]. 生态学杂志, 2008, 27(11):1895−1900. doi: 10.13292/j.1000-4890.2008.0363CHEN X L, WANG G H, JIN J, et al. Effects of two bacillus strains on microbial community structure in rhizosphere soils of cucumber and tomato [J]. Chinese Journal of Ecology, 2008, 27(11): 1895−1900.(in Chinese) doi: 10.13292/j.1000-4890.2008.0363 [25] 韩永琴, 陈新建, 罗路云, 等. 生防菌剂多黏类芽胞杆菌对辣椒根际土壤细菌群落的影响 [J]. 植物保护, 2020, 46(2):135−142. doi: 10.16688/j.zwbh.2018463HAN Y Q, CHEN X J, LUO L Y, et al. Effects of the biocontrol agent Bacillus polymyxa on the bacterial community in the rhizosphere of pepper [J]. Plant Protection, 2020, 46(2): 135−142.(in Chinese) doi: 10.16688/j.zwbh.2018463