Water Infiltration of Soil Affected by Earthworms
-
摘要:
目的 探究蚯蚓不同生态类型和密度对水浇地土壤水分入渗特征的影响。 方法 选取表栖型赤子爱胜蚓(Eisenia fetida)和深栖型参状远盲蚓(Amynthas aspergillum)为研究对象,以无蚯蚓土壤处理为对照,采用一维定水头土柱模拟试验,探究蚯蚓不同生态类型和密度(低密度4 g·kg−1,高密度8 g·kg−1)对土壤湿润锋、累积入渗量、入渗速率、含水率的影响及其与土壤性状的关系,并利用Philip模型和Kostiakov模型拟合分析土壤水分入渗规律。 结果 ①在相同时间内,蚯蚓明显降低湿润锋推进距离、推进速率、累积入渗量及入渗速率,尤其是低密度参状远盲蚓影响最为显著(P<0.01),且低密度蚯蚓的入渗性能较高密度蚯蚓处理差。②各处理入渗结束后,土壤含水率存在差异,参状远盲蚓极显著提高土壤含水率(P<0.01),且低密度处理最佳。③蚯蚓通过改变土壤的理化性质来降低土壤水分的入渗性能,其中电导率(Electricity conductivity,EC)值、有效磷(Available phosphorus, AP)值和砂粒为土壤水分入渗的主要驱动因素。④与Philip模型拟合结果相比,采用Kostiakov模型拟合效果更适用,对参状远盲蚓处理土壤入渗过程的拟合精度(RMSE≤4.80 mm)更高,且参状远盲蚓极显著降低了累积入渗量衰减程度(P<0.01)。 结论 经赤子爱胜蚓和参状远盲蚓改良后的水浇地土壤(壤砂质地),水分入渗性能降低,但对水分的蓄持能力增加。在改良水浇地土壤时,添加低密度的参状远盲蚓有利于土壤持水。 Abstract:Objective Effects of earthworms of different ecological classifications on water infiltration of the soil in which they inhabited were studied. Method Epigeic Eisenia fetida and endo-anecic Amynthas aspergillum were separately placed in soil containers to compare with one without earthworms. In a vertical one-dimensional stable water potential infiltration experimentation, the wetting front movement, accumulated infiltration, infiltration rate, and moisture content of the soil in the containers were monitored to analyze the correlation between soil properties and presence of the different types of earthworms in low-density at 4 g·kg−1 or high-density at 8 g·kg−1. The Philip and Kostiakov models were applied to mathematically describe the water infiltration function. Result ① The existence of earthworms simultaneously reduced the advancing distance, advancing rate, cumulative infiltration amount, and infiltration rate of the water wetting front in the soil, especially in the case of low-density A. aspergillum (P<0.01). The effect was more significant under low-density than high-density of the earthworms. ② Water retention of soil changed with the earthworm-induced water infiltration pattern which increased significantly by the low-density A. aspergillum treatment (P<0.01). ③ The major driving factors on soil that affected water infiltration attributed by the earthworms were electricity conductivity, available phosphorus, and sand. ④ Kostiakov model fitted the correlation between the soil water infiltration and the earthworm treatments more than Philip model did. A high fitting accuracy on RMSE≤4.80 mm was observed on the treatment by A. aspergillum. Moreover, A. aspergillum also significantly decreased the attenuation of cumulative water infiltration (P<0.01). Conclusion The water infiltration could be significantly lowered and moisture retention raised in a loamy sandy soil by the presence of E. fetida or A. aspergillum. It was conceivable that, at the density of 4 g·kg−1 of A. aspergillum, land of similar kind of soil could benefit from the improved water holding capacity as a result. -
Key words:
- Eisenia fetida /
- Amynthas aspergillum /
- loamy soil /
- water infiltration of soil
-
图 3 蚯蚓处理对入渗后土壤含水率的影响
图中不同大、小写字母表示各处理间差异极显著( P<0.01)或显著(P<0.05)。
Figure 3. Effect of earthworm treatments on moisture retention of water-infiltrated soil
Data with different lowercase letters indicate significant difference at 0.05 level; those with different capital letters, significant difference at 0.01 level.
表 1 各处理不同时段湿润锋推进距离
Table 1. Distance of wetting front advance in soil under earthworm treatments at different times
处理
Treatment湿润锋推进距离
The advance distance of wetting front/mm5 min 10 min 20 min 25 min CK 67.3±3.8Aa 106.7±6.8Aa 174.0±3.1Aa 191.3±1.9Aa E1 62.7±5.6Aa 90.0±6.1ABbc 133.7±5.2Cc 154.3±3.5Cc E2 65.0±2.7Aa 101.7±1.9Aab 152.7±1.7Bb 173.0±2.1Bb A1 59.0±1.5Aa 79.0±2.0Bc 105.0±3.2Dd 117.0±2.7De A2 68.3±1.2Aa 94.7±1.8ABab 126.67±3.5Cc 141.7±3.8Cd 表中不同大、小写字母表示各处理间差异极显著(P<0.01)或显著(P<0.05)。下同。
Data with different lowercase letters on same column indicate significant difference at 0.05 level; those with different capital letters, significant difference at 0.01 level. Same for below.表 2 各处理不同时间段的累积入渗量
Table 2. Accumulated water infiltration in soil under earthworm treatments at different times
处理
Treatment累积入渗量 Accumulative infiltration/mm 5 min 10 min 20 min 25 min CK 118.3±8.7Aa 198.7±8.3Aa 266.3±9.2Aa 284.7±8.1Aa E1 96.0±4.9Ab 151.7±0.7BCbc 231.3±1.2BCb 251.3±0.9Bb E2 107.3±7.3Aab 167.7±3.6Bbc 250.0±3.2ABab 271.7±6.0ABa A1 98.7±4.8Aab 130.0±3.8Cd 178.7±9.2Dd 204.0±9.9Cc A2 111.7±1.8Aab 145.7±6.2BCcd 205.7±2.6CDc 221.7±1.8Cc 表 3 各处理入渗速率的动态变化
Table 3. Changes on infiltration rate of soil after earthworm treatments (单位:mm·min−1)
处理
Treatment初始(1 min)
入渗速率
Initial infiltration rate中期(10 min)
入渗速率
Mid-term infiltration rate稳定(25 min)
入渗速率
Stable infiltration rateCK 39.0±3.5Aab 19.9±0.6Aa 11.4±0.1Aa E1 41.3±4.8Aab 15.2±0.8BCbc 10.1±0.3Bb E2 34.0±1.5Ab 16.8±0.0Bb 10.9±0.0ABa A1 49.3±4.8Aab 13.0±0.4Cd 8.2±0.2Cc A2 52.0±6.4Aa 14.6±0.4BCcd 8.9±0.4Cc 表 4 蚯蚓培养后土壤的理化性质
Table 4. Properties of soil in presence of earthworms
处理
TreatmentspH 电导率
EC/
(μs·cm−1)有机碳
SOC/
(g·kg−1)总氮
TN/
(g·kg−1)有效磷
AP/
(g·kg−1)有效钾
AK/
(g·kg−1)砂粒
Silt/%粉粒
Powder/%黏粒
Clay/%CK 7.65±0.04Bb 786.35±173.10Aa 18.68±0.00Bb 2.27±0.13Aa 0.39±0.01Aa 0.57±0.02Aab 83.4±1.0Aa 9.2±0.3Bb 7.5±1.2Bb E1 7.45±0.04Cc 684.52±109.68ABab 19.49±0.00Bb 2.53±0.26Aa 0.36±0.02Aa 0.56±0.02Aab 72.8±1.0Bb 15.6±0.4Aa 11.7±1.1Aa E2 7.61±0.04Bb 522.57±156.88ABbc 19.34±0.00Bb 2.43±0.04Aa 0.37±0.03Aa 0.44±0.03Ab 72.0±0.7Bb 15.8±0.3Aa 12.2±0.5Aa A1 7.60±0.06Bb 363.32±78.06Bc 19.52±0.00Bb 2.33±0.21Aa 0.27±0.03Bb 0.61±0.04Aa 72.3±0.6Bb 15.7±0.9Aa 12.0±0.9Aa A2 7.79±0.02Aa 516.12±109.52ABbc 25.69±0.00Aa 2.31±0.22Aa 0.26±0.24Bb 0.49±0.20Aab 73.2±1.6Bb 14.2±1.5Aa 12.7±0.1Aa 表 5 土壤入渗能力与其影响因子的相关性分析
Table 5. Correlation between water infiltration of soil and various affecting factors
入渗特征
Infiltration characteristicspH 电导率EC 有机碳SOC 总氮TN 有效磷AP 有效钾AK 砂粒
Sand粉粒
Powder黏粒
Clay初始(1 min)入渗率
Initial infiltration rate0.205 −0.418 0.341 0.126 −0.522* 0.422 −0.205 0.127 0.286 中期(10 min)入渗率
Mid-term infiltration rate0.019 0.560* −0.289 0.046 0.788** −0.079 0.794** −0.765** −0.751** 稳定(25 min)入渗率
Stable infiltration rate−0.148 0.664** −0.367 0.115 0.820** −0.267 0.565* −0.522* −0.563* 25 min累积入渗量
Accumulative infiltration−0.189 0.644** −0.417 0.147 0.858** −0.270 0.601* −0.559* −0.595* 表中“*”表示 P<0.05;“**”表示 P<0.01。
"*" indicates significant difference at 0.05 level; "**" indicates significant difference at 0.01 level.表 6 不同蚯蚓处理下Philip和Kostiakov入渗模型拟合结果
Table 6. Fitting of Philip and Kostiakov models on water infiltration of soil under earthworm treatments
处理
TreatmentPhilip模型 Philip model Kostiakov模型 Kostiakov model S A RMSE/mm GMER R2 K n RMSE/mm GMER R2 CK 64.18Aa −20.47Bb 12.61 2.68 0.975 41.38ab 0.64Aa 19.21 2.73 0.981 E1 53.46Bc −18.03Bb 4.97 2.72 0.996 39.52ab 0.57Aa 6.50 2.72 0.996 E2 59.04Ab −23.35Bb 8.66 2.68 0.988 35.45b 0.65Aa 16.87 2.73 0.981 A1 35.04De 19.69Aa 3.12 2.71 0.998 48.83a 0.43Bb 2.36 2.72 0.999 A2 41.38Cd 16.74Aa 5.63 2.71 0.995 52.28a 0.45Bb 4.80 2.72 0.998 -
[1] 国务院第三次全国国土调查领导小组办公室. 第三次全国国土调查主要数据公报[EB/OL]. [2022-09-05]. http://www.mnr.gov.cn/dt/ywbb/202108/t20210826_2678340.html [2] 中华人民共和国水利部. 2021年度《中国水资源公报》[EB/OL]. [2022-09-06]. http://mwr.gov.cn/xw/slyw/202206/t20220616_1579606.html [3] 张妙, 李秧秧, 白岗栓. 生物炭和PAM共施对黄绵土水分入渗和蒸发的影响 [J]. 水土保持研究, 2018, 25(5):124−130. doi: 10.13869/j.cnki.rswc.2018.05.017ZHANG M, LI Y Y, BAI G S. Effects of mixed use of biochar and polyacrylamide on water infiltration and evaporation in loessial soil [J]. Research of Soil and Water Conservation, 2018, 25(5): 124−130.(in Chinese) doi: 10.13869/j.cnki.rswc.2018.05.017 [4] NADRA K G , MOHAMMED K , MOHAMMED E H E O. Interaction between soil physicochemical parameters and earthworm communities in irrigated areas with natural water and wastewaters [J]. Applied and Environmental Soil Science, 2017, 2017: 1−16. [5] 徐远慧, 冯璐, 屈媛媛, 等. 黄土丘陵沟壑区退耕还草年限对土壤性质和入渗性能的影响 [J]. 水土保持学报, 2022, 36(2):57−63. doi: 10.13870/j.cnki.stbcxb.2022.02.007XU Y H, FENG L, QU Y Y, et al. Effects of different restoration years of grain for green on soil properties and infiltration performance in loess gully region [J]. Journal of Soil and Water Conservation, 2022, 36(2): 57−63.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2022.02.007 [6] 谭学进, 穆兴民, 高鹏, 等. 黄土区植被恢复对土壤物理性质的影响 [J]. 中国环境科学, 2019, 39(2):713−722. doi: 10.3969/j.issn.1000-6923.2019.02.034TAN X J, MU X M, GAO P, et al. Effects of vegetation restoration on changes to soil physical properties on the loess plateau [J]. China Environmental Science, 2019, 39(2): 713−722.(in Chinese) doi: 10.3969/j.issn.1000-6923.2019.02.034 [7] 黄晖, 毕舒贻, 字肖萌, 等. 深圳城市绿地土壤入渗性能及影响因素研究 [J]. 中国农学通报, 2020, 36(14):74−79.HUANG H, BI S Y, ZI X M, et al. Urban green spaces in Shenzhen: Soil infiltration capacity and its influencing factors [J]. Chinese Agricultural Science Bulletin, 2020, 36(14): 74−79.(in Chinese) [8] 韩生生, 刘苏峡, 宋献方, 等. 西沙赵述岛地表蒸散发实验 [J]. 地理研究, 2021, 40(1):172−184. doi: 10.11821/dlyj020190860HAN S S, LIU S X, SONG X F, et al. Field evapotranspiration experiment in Zhaoshu Island of Xisha Islands, South China Sea [J]. Geographical Research, 2021, 40(1): 172−184.(in Chinese) doi: 10.11821/dlyj020190860 [9] CASS A, SUMNER M E. Soil pore structural stability and irrigation water quality: I. empirical sodium stability model [J]. Soil Science Society of America Journal, 1982, 46(3): 503−506. doi: 10.2136/sssaj1982.03615995004600030011x [10] ALPEROVITCH N, SHAINBERG I, KEREN R. Specific effect of magnesium on the hydraulic conductivity of sodic soils [J]. Journal of Soil Science, 1981, 32(4): 543−554. doi: 10.1111/j.1365-2389.1981.tb01728.x [11] LAVELLE P, SPAIN A, BLOUIN M, et al. Ecosystem engineers in a self-organized soil [J]. Soil Science, 2016, 181(3/4): 91−109. doi: 10.1097/SS.0000000000000155 [12] EMMERLING C, RASSIER K M, SCHNEIDER R. A simple and effective method for linking field investigations of earthworms and water infiltration rate into soil at pedon-scale [J]. Journal of Plant Nutrition and Soil Science, 2015, 178(6): 841−847. doi: 10.1002/jpln.201500256 [13] CAPOWIEZ Y, SAMMARTINO S, MICHEL E. Burrow systems of endogeic earthworms: Effects of earthworm abundance and consequences for soil water infiltration [J]. Pedobiologia, 2014, 57(4/5/6): 303−309. [14] SHUSTER W, MCDONALD L, MCCARTNEY D, et al. Nitrogen source and earthworm abundance affected runoff volume and nutrient loss in a tilled-corn agroecosystem [J]. Biology and Fertility of Soils, 2002, 35(5): 320−327. doi: 10.1007/s00374-002-0474-4 [15] BRONICK C J, LAL R. Soil structure and management: A review [J]. Geoderma, 2005, 124(1/2): 3−22. [16] LI Y P, SHAO M G, WANG J A, et al. Effects of earthworm cast application on water evaporation and storage in loess soil column experiments [J]. Sustainability, 2020, 12(8): 3112. doi: 10.3390/su12083112 [17] LE BAYON R C, BINET F. Earthworm surface casts affect soil erosion by runoff water and phosphorus transfer in a temperate maize crop [J]. Pedobiologia, 2001, 45(5): 430−442. doi: 10.1078/0031-4056-00097 [18] CHEN M Y, SHAO M A, WEI X R, et al. Earthworm (Metaphire guillelmi) activities increase the risk of soil erosion–a simulation experiment [J]. Earth Surface Processes and Landforms, 2022, 47(7): 1734−1743. doi: 10.1002/esp.5343 [19] LIU T, CHENG J, LI X D, et al. Effects of earthworm (Amynthas aspergillum) activities and cast mulching on soil evaporation [J]. CATENA, 2021, 200: 105104. doi: 10.1016/j.catena.2020.105104 [20] 李彦霈, 邵明安, 王娇. 蚯蚓粪覆盖对土壤水分蒸发过程的影响 [J]. 土壤学报, 2018, 55(3):633−640. doi: 10.11766/trxb201711030431LI Y P, SHAO M A, WANG J. Effects of earthworm cast mulch on soil evaporation [J]. Acta Pedologica Sinica, 2018, 55(3): 633−640.(in Chinese) doi: 10.11766/trxb201711030431 [21] 鲍士旦. 土壤农化分析. 第三版[M]. 北京: 中国农业出版社, 2000. [22] 曲芷程, 栗云召, 于君宝, 等. 黄河口湿地典型植物群落土壤水、盐入渗过程模拟 [J]. 生态学杂志, 2022, 41(5):903−911. doi: 10.13292/j.1000-4890.202205.006QU Z C, LI Y Z, YU J B, et al. Simulation of soil water and salt transportation of typical plant community in estuarine wetland of the Yellow River Delta [J]. Chinese Journal of Ecology, 2022, 41(5): 903−911.(in Chinese) doi: 10.13292/j.1000-4890.202205.006 [23] 詹舒婷, 宋明丹, 李正鹏, 等. 不同秸秆生物炭对土壤水分入渗和蒸发的影响 [J]. 水土保持学报, 2021, 35(1):294−300. doi: 10.13870/j.cnki.stbcxb.2021.01.042ZHAN S T, SONG M D, LI Z P, et al. Effects of different straw biochars on soil water infiltration and evaporation [J]. Journal of Soil and Water Conservation, 2021, 35(1): 294−300.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2021.01.042 [24] 刘子涵, 才璐, 董勤各, 等. PE微塑料对土壤水分入渗的影响及入渗模型适宜性评价 [J]. 中国环境科学, 2022, 42(4):1795−1802. doi: 10.3969/j.issn.1000-6923.2022.04.035LIU Z H, CAI L, DONG Q G, et al. Effect of PE microplastics on soil water infiltration and suitability evaluation of infiltration model [J]. China Environmental Science, 2022, 42(4): 1795−1802.(in Chinese) doi: 10.3969/j.issn.1000-6923.2022.04.035 [25] 舒方瑜, 董勤各, 冯浩, 等. 不同有机物料对黄土高原治沟造地土壤水分运移的影响 [J]. 水土保持学报, 2022, 36(1):74−79. doi: 10.13870/j.cnki.stbcxb.2022.01.011SHU F Y, DONG Q G, FENG H, et al. Effects of different organic materials on water movement in gully land consolidation soil on the loess plateau [J]. Journal of Soil and Water Conservation, 2022, 36(1): 74−79.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2022.01.011 [26] 吴军虎, 邵凡凡, 刘侠. 蚯蚓粪对土壤团聚体组成和入渗过程水分运移的影响 [J]. 水土保持学报, 2019, 33(3):81−87. doi: 10.13870/j.cnki.stbcxb.2019.03.013WU J H, SHAO F F, LIU X. Effects of earthworm casts on soil aggregate composition and water transport during infiltration [J]. Journal of Soil and Water Conservation, 2019, 33(3): 81−87.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2019.03.013 [27] HALLAM J, HODSON M E. Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity [J]. Biology and Fertility of Soils, 2020, 56(5): 607−617. doi: 10.1007/s00374-020-01432-5 [28] HUANG J H, ZHANG W X, LIU M Y, et al. Different impacts of native and exotic earthworms on rhizodeposit carbon sequestration in a subtropical soil [J]. Soil Biology and Biochemistry, 2015, 90: 152−160. doi: 10.1016/j.soilbio.2015.08.011 [29] 杨振奇, 秦富仓, 李旻宇, 等. 砒砂岩区不同土地利用类型土壤入渗性能及其影响因素研究 [J]. 生态环境学报, 2020, 29(4):733−739. doi: 10.16258/j.cnki.1674-5906.2020.04.012YANG Z Q, QIN F C, LI M Y, et al. Soil infiltration capacity and its influencing factors of different land use types in feldspathic sandstone region [J]. Ecology and Environmental Sciences, 2020, 29(4): 733−739.(in Chinese) doi: 10.16258/j.cnki.1674-5906.2020.04.012 [30] 武敏, 范昊明, 刘爽, 等. SAR, EC与水温对辽西褐土入渗速率的影响研究 [J]. 水土保持研究, 2015, 22(3):276−279.WU M, FAN H M, LIU S, et al. Effects of SAR/EC and water temperature on infiltration in cinnamon of western Liaoning [J]. Research of Soil and Water Conservation, 2015, 22(3): 276−279.(in Chinese) [31] 宋美芳, 胡镇江, 胡义涛, 等. 长期施磷对水旱轮作生产力及土壤团聚体磷分布的影响 [J]. 长江大学学报(自科版), 2018, 15(18):1−6,90. doi: 10.16772/j.cnki.1673-1409.2018.18.001SONG M F, HU Z J, HU Y T, et al. Effects of long term application of phosphate fertilizer on the production and distribution of soil aggregates in a paddy-upland rotation system [J]. Journal of Yangtze University (Natural Science Edition), 2018, 15(18): 1−6,90.(in Chinese) doi: 10.16772/j.cnki.1673-1409.2018.18.001 [32] 曲植, 李健, 李铭江, 等. 磷素添加对土壤水分一维垂直入渗特性的影响 [J]. 农业工程学报, 2022, 38(5):72−78. doi: 10.11975/j.issn.1002-6819.2022.05.009QU Z, LI J, LI M J, et al. Effects of phosphorus addition on one-dimensional vertical infiltration characteristics of soil water [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(5): 72−78.(in Chinese) doi: 10.11975/j.issn.1002-6819.2022.05.009 [33] 孙娜, 李瑞平, 苗庆丰, 等. 河套灌区畦田内不同位置土壤入渗特性及影响因素分析 [J]. 节水灌溉, 2022(2):1−6. doi: 10.3969/j.issn.1007-4929.2022.02.001SUN N, LI R P, MIAO Q F, et al. Analysis of soil infiltration characteristics and influencing factors at different locations in fields at Hetao irrigation district [J]. Water Saving Irrigation, 2022(2): 1−6.(in Chinese) doi: 10.3969/j.issn.1007-4929.2022.02.001 [34] 崔莹莹, 吴家龙, 张池, 等. 不同生态类型蚯蚓对赤红壤和红壤团聚体分布和稳定性的影响 [J]. 华南农业大学学报, 2020, 41(1):83−90. doi: 10.7671/j.issn.1001-411X.201903034CUI Y Y, WU J L, ZHANG C, et al. Impacts of different ecological types of earthworm on aggregate distribution and stability in typical latosolic red and red soils [J]. Journal of South China Agricultural University, 2020, 41(1): 83−90.(in Chinese) doi: 10.7671/j.issn.1001-411X.201903034 [35] 陈楚楚, 黄新会, 刘芝芹, 等. 滇西北高原湿地不同植被类型下的土壤入渗特性及其影响因素 [J]. 水土保持通报, 2016, 36(2):82−87.CHEN C C, HUANG X H, LIU Z Q, et al. Infiltration characteristics and influencing factors of surface soil in plateau wetland of northwest Yunnan Province [J]. Bulletin of Soil and Water Conservation, 2016, 36(2): 82−87.(in Chinese) [36] 郑凯利, 邓东周. 若尔盖湿地土壤入渗性能及其影响因素 [J]. 水土保持研究, 2019, 26(3):179−184,191. doi: 10.13869/j.cnki.rswc.2019.03.026ZHENG K L, DENG D Z. Characteristic and influencing factors of soil infiltration in zoige wetland [J]. Research of Soil and Water Conservation, 2019, 26(3): 179−184,191.(in Chinese) doi: 10.13869/j.cnki.rswc.2019.03.026 [37] 王皓宇, 张池, 吴家龙, 等. 壮伟远盲蚓(Amynthas robustus)和南美岸蚓(Pontoscolex corethrurus)的人工生长繁殖及其对赤红壤碳氮磷素的影响 [J]. 西南农业学报, 2020, 33(7):1528−1537.WANG H Y, ZHANG C, WU J L, et al. Growth and fecundity of Amynthas robustus and Pontoscolex corethrurus on laboratory conditions and effects on carbon, nitrogen and phosphorus properties of South China lateritic red soil area [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(7): 1528−1537.(in Chinese)