• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蚯蚓改良水浇地土壤入渗性能及影响因素分析

陈静 张孟豪 杨倩楠 张晓龙 王超 张池 刘科学

陈静,张孟豪,杨倩楠,等. 蚯蚓改良水浇地土壤入渗性能及影响因素分析 [J]. 福建农业学报,2023,38(11):1367−1375 doi: 10.19303/j.issn.1008-0384.2023.11.013
引用本文: 陈静,张孟豪,杨倩楠,等. 蚯蚓改良水浇地土壤入渗性能及影响因素分析 [J]. 福建农业学报,2023,38(11):1367−1375 doi: 10.19303/j.issn.1008-0384.2023.11.013
CHEN J, ZHANG M H, YANG Q N, et al. Water Infiltration of Soil Affected by Earthworms [J]. Fujian Journal of Agricultural Sciences,2023,38(11):1367−1375 doi: 10.19303/j.issn.1008-0384.2023.11.013
Citation: CHEN J, ZHANG M H, YANG Q N, et al. Water Infiltration of Soil Affected by Earthworms [J]. Fujian Journal of Agricultural Sciences,2023,38(11):1367−1375 doi: 10.19303/j.issn.1008-0384.2023.11.013

蚯蚓改良水浇地土壤入渗性能及影响因素分析

doi: 10.19303/j.issn.1008-0384.2023.11.013
基金项目: 广东省自然科学基金项目(2021A1515011543);广东省教育科学“十三五”规划项目(2020GXJK116);广州新华学院教职工科研启动基金项目(2020KYZD02)
详细信息
    作者简介:

    陈静(1995 —),女,硕士,主要从事土壤生态环境相关研究,E-mail:1286697987@qq.com

    通讯作者:

    刘科学(1980 —),男,博士,副教授,主要从事土壤生态环境相关研究,E-mail:28257448@qq.com

  • 中图分类号: S157.3

Water Infiltration of Soil Affected by Earthworms

  • 摘要:   目的  探究蚯蚓不同生态类型和密度对水浇地土壤水分入渗特征的影响。  方法  选取表栖型赤子爱胜蚓(Eisenia fetida)和深栖型参状远盲蚓(Amynthas aspergillum)为研究对象,以无蚯蚓土壤处理为对照,采用一维定水头土柱模拟试验,探究蚯蚓不同生态类型和密度(低密度4 g·kg−1,高密度8 g·kg−1)对土壤湿润锋、累积入渗量、入渗速率、含水率的影响及其与土壤性状的关系,并利用Philip模型和Kostiakov模型拟合分析土壤水分入渗规律。  结果  ①在相同时间内,蚯蚓明显降低湿润锋推进距离、推进速率、累积入渗量及入渗速率,尤其是低密度参状远盲蚓影响最为显著(P<0.01),且低密度蚯蚓的入渗性能较高密度蚯蚓处理差。②各处理入渗结束后,土壤含水率存在差异,参状远盲蚓极显著提高土壤含水率(P<0.01),且低密度处理最佳。③蚯蚓通过改变土壤的理化性质来降低土壤水分的入渗性能,其中电导率(Electricity conductivity,EC)值、有效磷(Available phosphorus, AP)值和砂粒为土壤水分入渗的主要驱动因素。④与Philip模型拟合结果相比,采用Kostiakov模型拟合效果更适用,对参状远盲蚓处理土壤入渗过程的拟合精度(RMSE≤4.80 mm)更高,且参状远盲蚓极显著降低了累积入渗量衰减程度(P<0.01)。  结论  经赤子爱胜蚓和参状远盲蚓改良后的水浇地土壤(壤砂质地),水分入渗性能降低,但对水分的蓄持能力增加。在改良水浇地土壤时,添加低密度的参状远盲蚓有利于土壤持水。
  • 图  1  各处理对湿润锋推进距离及速率的影响

    a:不同处理的湿润锋推进距离;b:不同处理的湿润锋推进速率。

    Figure  1.  Effects of earthworm treatments on distance and rate of wetting front advance in soil

    a: Advance distance of wetting front of different treatments; b: Rate of advance distance of wetting front.

    图  2  各处理对累积入渗量及入渗速率的影响

    Figure  2.  Effects of earthworm treatments on accumulated water infiltration and infiltration rate of soil

    图  3  蚯蚓处理对入渗后土壤含水率的影响

    图中不同大、小写字母表示各处理间差异极显著( P<0.01)或显著(P<0.05)。

    Figure  3.  Effect of earthworm treatments on moisture retention of water-infiltrated soil

    Data with different lowercase letters indicate significant difference at 0.05 level; those with different capital letters, significant difference at 0.01 level.

    表  1  各处理不同时段湿润锋推进距离

    Table  1.   Distance of wetting front advance in soil under earthworm treatments at different times

    处理
    Treatment
    湿润锋推进距离
    The advance distance of wetting front/mm
    5 min10 min20 min25 min
    CK 67.3±3.8Aa 106.7±6.8Aa 174.0±3.1Aa 191.3±1.9Aa
    E1 62.7±5.6Aa 90.0±6.1ABbc 133.7±5.2Cc 154.3±3.5Cc
    E2 65.0±2.7Aa 101.7±1.9Aab 152.7±1.7Bb 173.0±2.1Bb
    A1 59.0±1.5Aa 79.0±2.0Bc 105.0±3.2Dd 117.0±2.7De
    A2 68.3±1.2Aa 94.7±1.8ABab 126.67±3.5Cc 141.7±3.8Cd
    表中不同大、小写字母表示各处理间差异极显著(P<0.01)或显著(P<0.05)。下同。
    Data with different lowercase letters on same column indicate significant difference at 0.05 level; those with different capital letters, significant difference at 0.01 level. Same for below.
    下载: 导出CSV

    表  2  各处理不同时间段的累积入渗量

    Table  2.   Accumulated water infiltration in soil under earthworm treatments at different times

    处理
    Treatment
    累积入渗量 Accumulative infiltration/mm
    5 min10 min20 min25 min
    CK118.3±8.7Aa198.7±8.3Aa266.3±9.2Aa284.7±8.1Aa
    E196.0±4.9Ab151.7±0.7BCbc231.3±1.2BCb251.3±0.9Bb
    E2107.3±7.3Aab167.7±3.6Bbc250.0±3.2ABab271.7±6.0ABa
    A198.7±4.8Aab130.0±3.8Cd178.7±9.2Dd204.0±9.9Cc
    A2111.7±1.8Aab145.7±6.2BCcd205.7±2.6CDc221.7±1.8Cc
    下载: 导出CSV

    表  3  各处理入渗速率的动态变化

    Table  3.   Changes on infiltration rate of soil after earthworm treatments          (单位:mm·min−1

    处理
    Treatment
    初始(1 min)
    入渗速率
    Initial infiltration rate
    中期(10 min)
    入渗速率
    Mid-term infiltration rate
    稳定(25 min)
    入渗速率
    Stable infiltration rate
    CK39.0±3.5Aab19.9±0.6Aa11.4±0.1Aa
    E141.3±4.8Aab15.2±0.8BCbc10.1±0.3Bb
    E234.0±1.5Ab16.8±0.0Bb10.9±0.0ABa
    A149.3±4.8Aab13.0±0.4Cd8.2±0.2Cc
    A252.0±6.4Aa14.6±0.4BCcd8.9±0.4Cc
    下载: 导出CSV

    表  4  蚯蚓培养后土壤的理化性质

    Table  4.   Properties of soil in presence of earthworms

    处理
    Treatments
    pH电导率
    EC/
    (μs·cm−1
    有机碳
    SOC/
    (g·kg−1
    总氮
    TN/
    (g·kg−1
    有效磷
    AP/
    (g·kg−1
    有效钾
    AK/
    (g·kg−1
    砂粒
    Silt/%
    粉粒
    Powder/%
    黏粒
    Clay/%
    CK7.65±0.04Bb786.35±173.10Aa18.68±0.00Bb2.27±0.13Aa0.39±0.01Aa0.57±0.02Aab83.4±1.0Aa9.2±0.3Bb7.5±1.2Bb
    E17.45±0.04Cc684.52±109.68ABab19.49±0.00Bb2.53±0.26Aa0.36±0.02Aa0.56±0.02Aab72.8±1.0Bb15.6±0.4Aa11.7±1.1Aa
    E27.61±0.04Bb522.57±156.88ABbc19.34±0.00Bb2.43±0.04Aa0.37±0.03Aa0.44±0.03Ab72.0±0.7Bb15.8±0.3Aa12.2±0.5Aa
    A17.60±0.06Bb363.32±78.06Bc19.52±0.00Bb2.33±0.21Aa0.27±0.03Bb0.61±0.04Aa72.3±0.6Bb15.7±0.9Aa12.0±0.9Aa
    A27.79±0.02Aa516.12±109.52ABbc25.69±0.00Aa2.31±0.22Aa0.26±0.24Bb0.49±0.20Aab73.2±1.6Bb14.2±1.5Aa12.7±0.1Aa
    下载: 导出CSV

    表  5  土壤入渗能力与其影响因子的相关性分析

    Table  5.   Correlation between water infiltration of soil and various affecting factors

    入渗特征
    Infiltration characteristics
    pH电导率EC有机碳SOC总氮TN有效磷AP有效钾AK砂粒
    Sand
    粉粒
    Powder
    黏粒
    Clay
    初始(1 min)入渗率
    Initial infiltration rate
    0.205 −0.418 0.341 0.126 −0.522* 0.422 −0.205 0.127 0.286
    中期(10 min)入渗率
    Mid-term infiltration rate
    0.019 0.560* −0.289 0.046 0.788** −0.079 0.794** −0.765** −0.751**
    稳定(25 min)入渗率
    Stable infiltration rate
    −0.148 0.664** −0.367 0.115 0.820** −0.267 0.565* −0.522* −0.563*
    25 min累积入渗量
    Accumulative infiltration
    −0.189 0.644** −0.417 0.147 0.858** −0.270 0.601* −0.559* −0.595*
    表中“*”表示 P<0.05;“**”表示 P<0.01。
    "*" indicates significant difference at 0.05 level; "**" indicates significant difference at 0.01 level.
    下载: 导出CSV

    表  6  不同蚯蚓处理下Philip和Kostiakov入渗模型拟合结果

    Table  6.   Fitting of Philip and Kostiakov models on water infiltration of soil under earthworm treatments

    处理
    Treatment
    Philip模型 Philip modelKostiakov模型 Kostiakov model
    SARMSE/mmGMERR2KnRMSE/mmGMERR2
    CK64.18Aa−20.47Bb12.612.680.97541.38ab0.64Aa19.212.730.981
    E153.46Bc−18.03Bb4.972.720.99639.52ab0.57Aa6.502.720.996
    E259.04Ab−23.35Bb8.662.680.98835.45b0.65Aa16.872.730.981
    A135.04De19.69Aa3.122.710.99848.83a0.43Bb2.362.720.999
    A241.38Cd16.74Aa5.632.710.99552.28a0.45Bb4.802.720.998
    下载: 导出CSV
  • [1] 国务院第三次全国国土调查领导小组办公室. 第三次全国国土调查主要数据公报[EB/OL]. [2022-09-05]. http://www.mnr.gov.cn/dt/ywbb/202108/t20210826_2678340.html
    [2] 中华人民共和国水利部. 2021年度《中国水资源公报》[EB/OL]. [2022-09-06]. http://mwr.gov.cn/xw/slyw/202206/t20220616_1579606.html
    [3] 张妙, 李秧秧, 白岗栓. 生物炭和PAM共施对黄绵土水分入渗和蒸发的影响 [J]. 水土保持研究, 2018, 25(5):124−130. doi: 10.13869/j.cnki.rswc.2018.05.017

    ZHANG M, LI Y Y, BAI G S. Effects of mixed use of biochar and polyacrylamide on water infiltration and evaporation in loessial soil [J]. Research of Soil and Water Conservation, 2018, 25(5): 124−130.(in Chinese) doi: 10.13869/j.cnki.rswc.2018.05.017
    [4] NADRA K G , MOHAMMED K , MOHAMMED E H E O. Interaction between soil physicochemical parameters and earthworm communities in irrigated areas with natural water and wastewaters [J]. Applied and Environmental Soil Science, 2017, 2017: 1−16.
    [5] 徐远慧, 冯璐, 屈媛媛, 等. 黄土丘陵沟壑区退耕还草年限对土壤性质和入渗性能的影响 [J]. 水土保持学报, 2022, 36(2):57−63. doi: 10.13870/j.cnki.stbcxb.2022.02.007

    XU Y H, FENG L, QU Y Y, et al. Effects of different restoration years of grain for green on soil properties and infiltration performance in loess gully region [J]. Journal of Soil and Water Conservation, 2022, 36(2): 57−63.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2022.02.007
    [6] 谭学进, 穆兴民, 高鹏, 等. 黄土区植被恢复对土壤物理性质的影响 [J]. 中国环境科学, 2019, 39(2):713−722. doi: 10.3969/j.issn.1000-6923.2019.02.034

    TAN X J, MU X M, GAO P, et al. Effects of vegetation restoration on changes to soil physical properties on the loess plateau [J]. China Environmental Science, 2019, 39(2): 713−722.(in Chinese) doi: 10.3969/j.issn.1000-6923.2019.02.034
    [7] 黄晖, 毕舒贻, 字肖萌, 等. 深圳城市绿地土壤入渗性能及影响因素研究 [J]. 中国农学通报, 2020, 36(14):74−79.

    HUANG H, BI S Y, ZI X M, et al. Urban green spaces in Shenzhen: Soil infiltration capacity and its influencing factors [J]. Chinese Agricultural Science Bulletin, 2020, 36(14): 74−79.(in Chinese)
    [8] 韩生生, 刘苏峡, 宋献方, 等. 西沙赵述岛地表蒸散发实验 [J]. 地理研究, 2021, 40(1):172−184. doi: 10.11821/dlyj020190860

    HAN S S, LIU S X, SONG X F, et al. Field evapotranspiration experiment in Zhaoshu Island of Xisha Islands, South China Sea [J]. Geographical Research, 2021, 40(1): 172−184.(in Chinese) doi: 10.11821/dlyj020190860
    [9] CASS A, SUMNER M E. Soil pore structural stability and irrigation water quality: I. empirical sodium stability model [J]. Soil Science Society of America Journal, 1982, 46(3): 503−506. doi: 10.2136/sssaj1982.03615995004600030011x
    [10] ALPEROVITCH N, SHAINBERG I, KEREN R. Specific effect of magnesium on the hydraulic conductivity of sodic soils [J]. Journal of Soil Science, 1981, 32(4): 543−554. doi: 10.1111/j.1365-2389.1981.tb01728.x
    [11] LAVELLE P, SPAIN A, BLOUIN M, et al. Ecosystem engineers in a self-organized soil [J]. Soil Science, 2016, 181(3/4): 91−109. doi: 10.1097/SS.0000000000000155
    [12] EMMERLING C, RASSIER K M, SCHNEIDER R. A simple and effective method for linking field investigations of earthworms and water infiltration rate into soil at pedon-scale [J]. Journal of Plant Nutrition and Soil Science, 2015, 178(6): 841−847. doi: 10.1002/jpln.201500256
    [13] CAPOWIEZ Y, SAMMARTINO S, MICHEL E. Burrow systems of endogeic earthworms: Effects of earthworm abundance and consequences for soil water infiltration [J]. Pedobiologia, 2014, 57(4/5/6): 303−309.
    [14] SHUSTER W, MCDONALD L, MCCARTNEY D, et al. Nitrogen source and earthworm abundance affected runoff volume and nutrient loss in a tilled-corn agroecosystem [J]. Biology and Fertility of Soils, 2002, 35(5): 320−327. doi: 10.1007/s00374-002-0474-4
    [15] BRONICK C J, LAL R. Soil structure and management: A review [J]. Geoderma, 2005, 124(1/2): 3−22.
    [16] LI Y P, SHAO M G, WANG J A, et al. Effects of earthworm cast application on water evaporation and storage in loess soil column experiments [J]. Sustainability, 2020, 12(8): 3112. doi: 10.3390/su12083112
    [17] LE BAYON R C, BINET F. Earthworm surface casts affect soil erosion by runoff water and phosphorus transfer in a temperate maize crop [J]. Pedobiologia, 2001, 45(5): 430−442. doi: 10.1078/0031-4056-00097
    [18] CHEN M Y, SHAO M A, WEI X R, et al. Earthworm (Metaphire guillelmi) activities increase the risk of soil erosion–a simulation experiment [J]. Earth Surface Processes and Landforms, 2022, 47(7): 1734−1743. doi: 10.1002/esp.5343
    [19] LIU T, CHENG J, LI X D, et al. Effects of earthworm (Amynthas aspergillum) activities and cast mulching on soil evaporation [J]. CATENA, 2021, 200: 105104. doi: 10.1016/j.catena.2020.105104
    [20] 李彦霈, 邵明安, 王娇. 蚯蚓粪覆盖对土壤水分蒸发过程的影响 [J]. 土壤学报, 2018, 55(3):633−640. doi: 10.11766/trxb201711030431

    LI Y P, SHAO M A, WANG J. Effects of earthworm cast mulch on soil evaporation [J]. Acta Pedologica Sinica, 2018, 55(3): 633−640.(in Chinese) doi: 10.11766/trxb201711030431
    [21] 鲍士旦. 土壤农化分析. 第三版[M]. 北京: 中国农业出版社, 2000.
    [22] 曲芷程, 栗云召, 于君宝, 等. 黄河口湿地典型植物群落土壤水、盐入渗过程模拟 [J]. 生态学杂志, 2022, 41(5):903−911. doi: 10.13292/j.1000-4890.202205.006

    QU Z C, LI Y Z, YU J B, et al. Simulation of soil water and salt transportation of typical plant community in estuarine wetland of the Yellow River Delta [J]. Chinese Journal of Ecology, 2022, 41(5): 903−911.(in Chinese) doi: 10.13292/j.1000-4890.202205.006
    [23] 詹舒婷, 宋明丹, 李正鹏, 等. 不同秸秆生物炭对土壤水分入渗和蒸发的影响 [J]. 水土保持学报, 2021, 35(1):294−300. doi: 10.13870/j.cnki.stbcxb.2021.01.042

    ZHAN S T, SONG M D, LI Z P, et al. Effects of different straw biochars on soil water infiltration and evaporation [J]. Journal of Soil and Water Conservation, 2021, 35(1): 294−300.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2021.01.042
    [24] 刘子涵, 才璐, 董勤各, 等. PE微塑料对土壤水分入渗的影响及入渗模型适宜性评价 [J]. 中国环境科学, 2022, 42(4):1795−1802. doi: 10.3969/j.issn.1000-6923.2022.04.035

    LIU Z H, CAI L, DONG Q G, et al. Effect of PE microplastics on soil water infiltration and suitability evaluation of infiltration model [J]. China Environmental Science, 2022, 42(4): 1795−1802.(in Chinese) doi: 10.3969/j.issn.1000-6923.2022.04.035
    [25] 舒方瑜, 董勤各, 冯浩, 等. 不同有机物料对黄土高原治沟造地土壤水分运移的影响 [J]. 水土保持学报, 2022, 36(1):74−79. doi: 10.13870/j.cnki.stbcxb.2022.01.011

    SHU F Y, DONG Q G, FENG H, et al. Effects of different organic materials on water movement in gully land consolidation soil on the loess plateau [J]. Journal of Soil and Water Conservation, 2022, 36(1): 74−79.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2022.01.011
    [26] 吴军虎, 邵凡凡, 刘侠. 蚯蚓粪对土壤团聚体组成和入渗过程水分运移的影响 [J]. 水土保持学报, 2019, 33(3):81−87. doi: 10.13870/j.cnki.stbcxb.2019.03.013

    WU J H, SHAO F F, LIU X. Effects of earthworm casts on soil aggregate composition and water transport during infiltration [J]. Journal of Soil and Water Conservation, 2019, 33(3): 81−87.(in Chinese) doi: 10.13870/j.cnki.stbcxb.2019.03.013
    [27] HALLAM J, HODSON M E. Impact of different earthworm ecotypes on water stable aggregates and soil water holding capacity [J]. Biology and Fertility of Soils, 2020, 56(5): 607−617. doi: 10.1007/s00374-020-01432-5
    [28] HUANG J H, ZHANG W X, LIU M Y, et al. Different impacts of native and exotic earthworms on rhizodeposit carbon sequestration in a subtropical soil [J]. Soil Biology and Biochemistry, 2015, 90: 152−160. doi: 10.1016/j.soilbio.2015.08.011
    [29] 杨振奇, 秦富仓, 李旻宇, 等. 砒砂岩区不同土地利用类型土壤入渗性能及其影响因素研究 [J]. 生态环境学报, 2020, 29(4):733−739. doi: 10.16258/j.cnki.1674-5906.2020.04.012

    YANG Z Q, QIN F C, LI M Y, et al. Soil infiltration capacity and its influencing factors of different land use types in feldspathic sandstone region [J]. Ecology and Environmental Sciences, 2020, 29(4): 733−739.(in Chinese) doi: 10.16258/j.cnki.1674-5906.2020.04.012
    [30] 武敏, 范昊明, 刘爽, 等. SAR, EC与水温对辽西褐土入渗速率的影响研究 [J]. 水土保持研究, 2015, 22(3):276−279.

    WU M, FAN H M, LIU S, et al. Effects of SAR/EC and water temperature on infiltration in cinnamon of western Liaoning [J]. Research of Soil and Water Conservation, 2015, 22(3): 276−279.(in Chinese)
    [31] 宋美芳, 胡镇江, 胡义涛, 等. 长期施磷对水旱轮作生产力及土壤团聚体磷分布的影响 [J]. 长江大学学报(自科版), 2018, 15(18):1−6,90. doi: 10.16772/j.cnki.1673-1409.2018.18.001

    SONG M F, HU Z J, HU Y T, et al. Effects of long term application of phosphate fertilizer on the production and distribution of soil aggregates in a paddy-upland rotation system [J]. Journal of Yangtze University (Natural Science Edition), 2018, 15(18): 1−6,90.(in Chinese) doi: 10.16772/j.cnki.1673-1409.2018.18.001
    [32] 曲植, 李健, 李铭江, 等. 磷素添加对土壤水分一维垂直入渗特性的影响 [J]. 农业工程学报, 2022, 38(5):72−78. doi: 10.11975/j.issn.1002-6819.2022.05.009

    QU Z, LI J, LI M J, et al. Effects of phosphorus addition on one-dimensional vertical infiltration characteristics of soil water [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(5): 72−78.(in Chinese) doi: 10.11975/j.issn.1002-6819.2022.05.009
    [33] 孙娜, 李瑞平, 苗庆丰, 等. 河套灌区畦田内不同位置土壤入渗特性及影响因素分析 [J]. 节水灌溉, 2022(2):1−6. doi: 10.3969/j.issn.1007-4929.2022.02.001

    SUN N, LI R P, MIAO Q F, et al. Analysis of soil infiltration characteristics and influencing factors at different locations in fields at Hetao irrigation district [J]. Water Saving Irrigation, 2022(2): 1−6.(in Chinese) doi: 10.3969/j.issn.1007-4929.2022.02.001
    [34] 崔莹莹, 吴家龙, 张池, 等. 不同生态类型蚯蚓对赤红壤和红壤团聚体分布和稳定性的影响 [J]. 华南农业大学学报, 2020, 41(1):83−90. doi: 10.7671/j.issn.1001-411X.201903034

    CUI Y Y, WU J L, ZHANG C, et al. Impacts of different ecological types of earthworm on aggregate distribution and stability in typical latosolic red and red soils [J]. Journal of South China Agricultural University, 2020, 41(1): 83−90.(in Chinese) doi: 10.7671/j.issn.1001-411X.201903034
    [35] 陈楚楚, 黄新会, 刘芝芹, 等. 滇西北高原湿地不同植被类型下的土壤入渗特性及其影响因素 [J]. 水土保持通报, 2016, 36(2):82−87.

    CHEN C C, HUANG X H, LIU Z Q, et al. Infiltration characteristics and influencing factors of surface soil in plateau wetland of northwest Yunnan Province [J]. Bulletin of Soil and Water Conservation, 2016, 36(2): 82−87.(in Chinese)
    [36] 郑凯利, 邓东周. 若尔盖湿地土壤入渗性能及其影响因素 [J]. 水土保持研究, 2019, 26(3):179−184,191. doi: 10.13869/j.cnki.rswc.2019.03.026

    ZHENG K L, DENG D Z. Characteristic and influencing factors of soil infiltration in zoige wetland [J]. Research of Soil and Water Conservation, 2019, 26(3): 179−184,191.(in Chinese) doi: 10.13869/j.cnki.rswc.2019.03.026
    [37] 王皓宇, 张池, 吴家龙, 等. 壮伟远盲蚓(Amynthas robustus)和南美岸蚓(Pontoscolex corethrurus)的人工生长繁殖及其对赤红壤碳氮磷素的影响 [J]. 西南农业学报, 2020, 33(7):1528−1537.

    WANG H Y, ZHANG C, WU J L, et al. Growth and fecundity of Amynthas robustus and Pontoscolex corethrurus on laboratory conditions and effects on carbon, nitrogen and phosphorus properties of South China lateritic red soil area [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(7): 1528−1537.(in Chinese)
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  142
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-02
  • 修回日期:  2023-07-12
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回