Effects of Straw-returning on N2O Emission and Nitrifying/Denitrifying Microbes in Paddy Soil in Southern China
-
摘要:
目的 以我国南方典型赤红壤水稻土为研究对象,探究不同秸秆还田量对双季稻区晚稻季土壤N2O排放特征及硝化和反硝化微生物的影响,旨在为南方稻田N2O减排提供科学依据。 方法 以2015年设置的定位试验为研究平台,设计5个处理:(1)CK,化肥+无秸秆还田;(2)CKS,化肥+当季秸秆全量还田;(3)S10,化肥+当季秸秆全量还田+秸秆替代10%钾肥;(4)S20,化肥+当季秸秆全量还田+秸秆替代20%钾肥;(5)S30,化肥+当季秸秆全量还田+秸秆替代30%钾肥。采用密闭静态暗箱-气相色谱法及宏基因组测序对气体和土壤微生物进行检测。 结果 稻田土壤N2O排放主要集中在水稻分蘖期;较CK处理,秸秆还田各处理显著降低了稻田土壤N2O累计排放量,其中,S30处理的N2O累计排放量最低,为0.09 kg·hm−2,其全球增温潜势也最低;硝化过程中,氨氧化细菌(amoA和amoB)在分蘖期和成熟期的优势菌属均为甲基孢囊菌属;反硝化过程中,nirK型反硝化细菌的芽单胞菌属、罗河杆菌属、丰祐菌属在分蘖期和成熟期细菌属中均占据主导地位;nirS型反硝化细菌的嗜甲基菌属和甲基营养型反硝化菌属在分蘖期和成熟期细菌属中均占据主导地位;分蘖期,土壤N2O排放量与nirS型反硝化细菌的甲基营养型反硝化菌属呈显著负相关、与nirS型反硝化细菌的沙壤土杆菌属呈显著正相关;成熟期,土壤N2O排放量与nirS型反硝化细菌的水生细菌属呈极显著正相关关系。 结论 秸秆还田显著降低了稻田土壤N2O排放,AOB(amoA)和AOB(amoB)的甲基孢囊菌属是氨氧化过程的优势菌属,nirK型反硝化细菌的芽单胞菌属、罗河杆菌属、丰祐菌属,和nirS型反硝化细菌的嗜甲基菌属及甲基营养型反硝化菌属是反硝化过程的优势菌属。 Abstract:Objective Effects of returning spent straws to soil after crop harvest as a conditioner/fertilizer on the N2O emission and nitrifying/denitrifying microbes on a double-cropping rice field in late season were studied. Method Based on a positioning experiment set up in 2015, the field soil was treated with (1) chemical fertilizer without straw-returning (CK), (2) chemical fertilizer + 100% straw-returning in same season (CKS), (3) CKS + straws to replace 10% potassium fertilizer (S10), (4) CKS + straws to replace 20% potassium fertilizer (S20) or (5) CKS + straws to replace 30% potassium fertilizer (S30). N2O emitted and microorganisms in the soils were detected using the closed static dark box-gas chromatography and metagenomic sequencing technique. Result N2O was released from the paddy soils basically during the rice tillering stage. Compared with CK, returning spent straws to the ground significantly reduced the cumulative gas emission from the soil under the S30 treatment, which rendered the lowest rate at 0.09 kg·hm-2, and thus, the least contribution to global warming. Of the nitrifying microflora in soil, the dominant genus of ammonia-oxidizing bacteria (i.e., amoA and amoB) at the tillering and mature stages was Methylospora. Among the denitrifying microbes, the nirK-type Gemmatimonadetes, Rhodobacter, and Opitutus and the nirS-type Methylobacillus and Methylotenera were dominantly present. At the rice tillering stage, the N2O emissions were significantly inversely correlated with Methylotenera but positively with Ramlibacter. At the mature stage, a significant correlation between the soil N2O emission and Aquabacterium population was observed. Conclusion By returning the spent straws to the field, a significant reduction on the N2O emissions from paddy soil was resulted. And Methylospora was the dominant genus involved in the ammonia oxidation, whereas the nirK-type Gemmatimonadetes,Rhodobacter and Opitutus and the nirS-type Methylobacillus and Methylotenera were the dominant genera of denitrifying bacteria. -
表 1 不同处理化肥养分投入量
Table 1. Nutrients in treatment fertilizers
(kg·hm−2) 处理
Treatment早稻 Early rice 晚稻 Late rice 总计 Total N P2O5 K2O N P2O5 K2O N P2O5 K2O CK 155.3 47.3 135 155.3 47.3 135 310.5 94.5 270 CKS 155.3 47.3 135 155.3 47.3 135 310.5 94.5 270 S10 155.3 47.3 121.5 155.3 47.3 121.5 310.5 94.5 243 S20 155.3 47.3 108 155.3 47.3 108 310.5 94.5 216 S30 155.3 47.3 94.5 155.3 47.3 94.5 310.5 94.5 189 表 2 硝化反硝化过程关键功能基因
Table 2. Key functional genes involving nitrification and denitrification in soil
功能基因分组
Functional gene grouping目标基因
Target geneKEGG编号
KEGG number基因功能详情
Gene Function Details硝化作用 Nitrification amoA(AOB) K10944 氨单加氧酶亚基A Ammonia monooxygenase subunit A amoB(AOB) K10945 氨单加氧酶亚基B Ammonia monooxygenase subunit B 反硝化作用 Denitrification nirK K00368 亚硝酸还原酶 Nitrite reductase nirS K15864 亚硝酸还原酶 Nitrite reductase 表 3 不同处理下土壤N2O的增温潜势
Table 3. Global warming potentials due to N2O emitted from soils under treatments
(kg·hm-2) 处理 Treatement CK S10 S20 S30 CKS GWP 204.05±12.24 a 31.80±3.06 d 95.40±9.18 c 23.85±1.53 d 121.90±9.18 b 表 4 分蘖期土壤N2O排放通量与硝化反硝化微生物群落相关性
Table 4. Correlation between soil N2O emission and nitrifying/denitrifying microbes at rice tillering stage
硝化和反硝化功能基因
Nitrification and Denitrifying gene菌属(属水平)
Bacteria(genus level)相关性系数
Correlation coefficientP值
P−valueamoA (AOB) 甲基孢囊菌属(Methylocystis) 0.107 0.703 亚硝化螺菌属(Nitrosospira) −0.068 0.809 硝化螺菌属(Nitrospira) 0.227 0.416 amoB(AOB) 慢生根瘤菌属(Bradyrhizobium) −0.038 0.892 甲基孢囊菌属(Methylocystis) −0.152 0.588 nirK 气火菌属(Aeropyrum) −0.098 0.729 Ardenticatena −0.250 0.370 慢生根瘤菌属(Bradyrhizobium) 0.078 0.781 厌氧铵氧化菌(Candidatus Brocadia) −0.236 0.396 戴氏菌属(Dyella) −0.018 0.948 芽单胞菌属(Gemmatimonas) 0.260 0.348 新草螺菌属(Noviherbaspirillum) −0.118 0.676 丰祐菌属(Opitutus) −0.489 0.064 生丝微菌属(Pseudolabrys) −0.225 0.419 罗尔斯顿菌属(Ralstonia) −0.136 0.628 罗河杆菌属(Rhodanobacter) −0.073 0.795 nirS 水生细菌(Aquabacterium) −0.136 0.629 广泛固氮氢自养单胞菌(Azohydromonas) −0.117 0.677 慢生根瘤菌属(Bradyrhizobium) −0.210 0.453 累积念珠菌(Candidatus Accumulibacter) −0.057 0.839 草螺菌(Herbaspirillum) 0.048 0.864 嗜甲基菌属(Methylobacillus) −0.166 0.555 甲基营养型反硝化菌(Methylotenera) −0.606* 0.017 新草螺菌属(Noviherbaspirillum) −0.384 0.158 沙壤土杆菌(Ramlibacter) 0.521* 0.046 红长命菌属(Rubrivivax) −0.110 0.698 硫氧化菌(Sulfurovum) 0.229 0.412 陶厄氏菌(Thauera) 0.120 0.670 硫杆菌(Thiobacillus) 0.248 0.372 辫硫细菌属(Thioploca) 0.030 0.915 “*”和“**”分别表示相关性为显著(P<0.05)和极显著(P<0.01)。下同。
* and ** indicate significant correlation at P<0.05, and extremely significant at P<0.01, respectively. Same for below.表 5 成熟期土壤N2O排放通量与硝化反硝化微生物群落相关性
Table 5. Correlation between soil N2O emission and nitrifying/denitrifying microbes at rice mature stage
硝化和反硝化功能基因
Nitrification and Denitrifying gene菌属(属水平)
Bacteria (genus level)相关性系数
Correlation coefficientP值
P−valueamoA(AOB) 甲基孢囊菌属(Methylocystis) −0.274 0.323 亚硝化螺菌属(Nitrosospira) 0.089 0.753 硝化螺菌属(Nitrospira) −0.098 0.729 amoB(AOB) 慢生根瘤菌属(Bradyrhizobium) −0.390 0.151 甲基孢囊菌属(Methylocystis) 0.354 0.195 nirK Ardenticatena 0.253 0.363 慢生根瘤菌属(Bradyrhizobium) 0.201 0.473 厌氧铵氧化菌(Candidatus Brocadia) −0.008 0.979 戴氏菌属(Dyella) 0.087 0.757 芽单胞菌属(Gemmatimonas) 0.005 0.987 微单孢菌属(Gemmatirosa) −0.261 0.347 新草螺菌属(Noviherbaspirillum) 0.482 0.069 丰祐菌属(Opitutus) −0.099 0.727 生丝微菌属(Pseudolabrys) −0.280 0.311 罗尔斯顿菌属(Ralstonia) 0.297 0.283 罗河杆菌属(Rhodanobacter) 0.096 0.735 nirS 水生细菌(Aquabacterium) 0.642** 0.010 广泛固氮氢自养单胞菌(Azohydromonas) −0.119 0.674 慢生根瘤菌属(Bradyrhizobium) −0.087 0.757 累积念珠菌(Candidatus Accumulibacter) −0.377 0.166 草螺菌(Herbaspirillum) −0.435 0.105 嗜甲基菌属(Methylobacillus) 0.306 0.267 甲基营养型反硝化菌(Methylotenera) 0.173 0.539 新草螺菌属(Noviherbaspirillum) −0.123 0.661 沙壤土杆菌(Ramlibacter) 0.272 0.326 硫氧化菌(Sulfurovum) 0.327 0.234 陶厄氏菌(Thauera) 0.189 0.501 辫硫细菌属(Thioploca) 0.327 0.234 -
[1] 韩星, 于海洋, 郑宁国, 等. 茶园氧化亚氮排放研究进展 [J]. 应用生态学报, 2023, 34(3):805−814.HAN X, YU H Y, ZHENG N G, et al. Nitrous oxide emissions from tea plantations: A review [J]. Chinese Journal of Applied Ecology, 2023, 34(3): 805−814.(in Chinese) [2] RODHE H. A comparison of the contribution of various gases to the greenhouse effect [J]. Science, 1990, 248(4960): 1217−1219. doi: 10.1126/science.248.4960.1217 [3] 谭立山. 农业土壤N2O产生途径及其影响因素研究进展 [J]. 亚热带农业研究, 2017, 13(3):196−204.TAN L S. Advances in N2O generation pathway in agricultural soils and major influencing factors [J]. Subtropical Agriculture Research, 2017, 13(3): 196−204.(in Chinese) [4] 朱永官, 王晓辉, 杨小茹, 等. 农田土壤N2O产生的关键微生物过程及减排措施 [J]. 环境科学, 2014, 35(2):792−800.ZHU Y G, WANG X H, YANG X R, et al. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies [J]. Environmental Science, 2014, 35(2): 792−800.(in Chinese) [5] FRAME C H, CASCIOTTI K L. Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium [J]. Biogeosciences, 2010, 7(9): 2695−2709. doi: 10.5194/bg-7-2695-2010 [6] 张洋, 李雅颖, 郑宁国, 等. 生物硝化抑制剂的抑制原理及其研究进展 [J]. 江苏农业科学, 2019, 47(1):21−26.ZHANG Y, LI Y Y, ZHENG N G, et al. Mechanisms and research progress of biological nitrification inhibitor [J]. Jiangsu Agricultural Sciences, 2019, 47(1): 21−26.(in Chinese) [7] 胡军. 生物硝化抑制剂在农业中的应用效果研究[D]. 南京: 南京农业大学, 2014.HU J. Application effect of biological nitrification inhibitors in agriculture[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese) [8] 宋雅琦, 吴电明, 俞元春. 土壤活性氮气体排放研究进展 [J]. 科技导报, 2022, 40(3):130−144.SONG Y Q, WU D M, YU Y C. Soil reactive nitrogen gases emission: A review [J]. Science & Technology Review, 2022, 40(3): 130−144.(in Chinese) [9] 林红莲. 米槠天然林土壤氮素转化和N2O产生的温湿度影响研究[D]. 福州: 福建师范大学, 2021.LIN H L. A study of soil N transformation and N2O production for Castanopsis carlesii dominated natural forest as affected by temperature and moisture[D]. Fuzhou: Fujian Normal University, 2021. (in Chinese) [10] 吕泽芳, 王蓉, 郭显金, 等. 还田秸秆种类对稻田N2O排放及nosZ型反硝化细菌群落结构的影响 [J]. 河南农业科学, 2021, 50(8):66−75.LÜ Z F, WANG R, GUO X J, et al. Effects of returned straw types on N2O emission and nosZ-denitrifying bacterial community structure in paddy soil [J]. Journal of Henan Agricultural Sciences, 2021, 50(8): 66−75.(in Chinese) [11] 孙鹏洲, 罗珠珠, 李玲玲, 等. 黄土高原半干旱区长期种植苜蓿对土壤反硝化微生物群落N2O排放的影响 [J]. 中国生态农业学报, 2023, 31(1):67−78.SUN P Z, LUO Z Z, LI L L, et al. Effects of long-term alfalfa planting on N2O emission from soil denitrifying microbial community in semi-arid region of the Loess Plateau [J]. Chinese Journal of Ecological Agriculture, 2023, 31(1): 67−78.(in Chinese) [12] 张新宇. 辽宁省作物秸秆替代钾肥潜力及其在温室蔬菜上应用效果[D]. 沈阳: 沈阳农业大学, 2022.ZHANG X Y. Potential of crop straw replacing potassium fertilizer in Liaoning Province and its application in greenhouse vegetables[D]. Shenyang: Shenyang Agricultural University, 2022. (in Chinese) [13] 刘树林, 马丽文. 农村秸秆焚烧带来的危害及如何综合利用 [J]. 农村实用技术, 2023(3):116−117.LIU S L, MA L W. Harm caused by burning straw in rural areas and how to comprehensively utilize it [J]. Nongcun Shiyong Jishu, 2023(3): 116−117.(in Chinese) [14] 李诗, 李婷婷, 胡钧铭, 等. 有机无机氮农田环境效应与减肥增效途径综述 [J]. 江苏农业科学, 2023, 51(14):43−49.LI S, LI T T, HU J M, et al. Environmental effects of organic and inorganic nitrogen on farmland and ways of reducing fertilizer and increasing efficiency: A review [J]. Jiangsu Agricultural Sciences, 2023, 51(14): 43−49.(in Chinese) [15] 田慎重, 郭洪海, 姚利, 等. 中国种养业废弃物肥料化利用发展分析 [J]. 农业工程学报, 2018, 34(S1):123−131.TIAN S Z, GUO H H, YAO L, et al. Development analysis for fertilizer utilization of agricultural planting and animal wastes in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1): 123−131.(in Chinese) [16] 王沛譞, 徐焱, 宋亚娜. 转基因水稻秸秆还田对土壤硝化反硝化微生物群落的影响 [J]. 中国生态农业学报, 2018, 26(1):8−15.WANG P X, XU Y, SONG Y N. Effect of transgenic rice straw return to soil on nitrification and denitrification microbial community [J]. Chinese Journal of Eco-Agriculture, 2018, 26(1): 8−15.(in Chinese) [17] 王肖娟, 王永强, 赵双玲, 等. 不同灌溉方式及施肥量对稻田土壤N2O排放的影响 [J]. 大麦与谷类科学, 2018, 35(3):1−4,21.WANG X J, WANG Y Q, ZHAO S L, et al. Effects of drip irrigation and flood irrigation under different application rates of nitrogen fertilizer on N2O emission in rice field [J]. Barley and Cereal Sciences, 2018, 35(3): 1−4,21.(in Chinese) [18] 谢婉玉, 王永明, 纪红梅, 等. 秸秆还田种类对稻田N2O排放及硝化反硝化微生物的影响 [J]. 土壤, 2022, 54(4):769−778.XIE W Y, WANG Y M, JI H M, et al. Effects of returned straw type on N2O emission, nitrification and denitrification microorganisms from paddy field [J]. Soils, 2022, 54(4): 769−778.(in Chinese) [19] 张鹏, 吴佩聪, 单颖, 等. 秸秆还田对热带土壤-水稻种植系统N2O排放的影响 [J]. 华北农学报, 2021, 36(S1):260−266.ZHANG P, WU P C, SHAN Y, et al. Effects of straw returning on N2O emission under tropical soil-rice planting system [J]. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 260−266.(in Chinese) [20] 张冉, 赵鑫, 濮超, 等. 中国农田秸秆还田土壤N2O排放及其影响因素的Meta分析 [J]. 农业工程学报, 2015, 31(22):1−6.ZHANG R, ZHAO X, PU C, et al. Meta-analysis on effects of residue retention on soil N2O emissions and influence factors in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 1−6.(in Chinese) [21] 卢廷超, 徐培智, 张仁陟, 等. 保护性耕作模式下早稻田甲烷排放特征 [J]. 南方农业学报, 2017, 48(8):1395−1401.LU T C, XU P Z, ZHANG R Z, et al. Characteristics of CH4 emission in early rice paddy field under conservation tillage [J]. Journal of Southern Agriculture, 2017, 48(8): 1395−1401.(in Chinese) [22] 邢佳庆, 刘刚, 孙宇, 等. 不同施肥策略对阴山北麓旱作燕麦人工草地N2O排放的影响 [J]. 草地学报, 2023, 31(3):827−833.XING J Q, LIU G, SUN Y, et al. Effects of different fertilization types on N2O emissions from dry Avena sativa L. artificial farmland in the northern slope of Yinshan Mountain [J]. Acta Agrestia Sinica, 2023, 31(3): 827−833.(in Chinese) [23] 王永明, 徐永记, 纪洋, 等. 节水灌溉和控释肥施用耦合措施对单季稻田CH4和N2O排放的影响 [J]. 环境科学, 2021, 42(12):6025−6037.WANG Y M, XU Y J, JI Y, et al. Coupling effects of water-saving irrigation and controlled-release fertilizer (CRF) application on CH4 and N2O emission in single cropping paddy field [J]. Environmental Science, 2021, 42(12): 6025−6037.(in Chinese) [24] 靳红梅, 常志州, 吴华山, 等. 菜地追施猪粪沼液后NH3和N2O排放特征及氮损失率 [J]. 植物营养与肥料学报, 2013, 19(5):1155−1165.JIN H M, CHANG Z Z, WU H S, et al. NH3 and N2O emission and nitrogen loss rate from biogas liquid produced by pig slurry after topdressing on vegetable fields [J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1155−1165.(in Chinese) [25] 彭毅, 李惠通, 张少维, 等. 秸秆还田、地膜覆盖及施氮对冬小麦田N2O和N2排放的影响 [J]. 环境科学, 2022, 43(3):1668−1677.PENG Y, LI H T, ZHANG S W, et al. Effect of film mulching, straw retention, and nitrogen fertilization on the N2O and N2 emission in a winter wheat field [J]. Environmental Science, 2022, 43(3): 1668−1677.(in Chinese) [26] 郭小军, 王欣, 周旦, 等. 有机培肥条件下红壤区稻田土壤病毒多样性及其对生物地球碳循环的影响 [J]. 南方农业学报, 2022, 53(9):2468−2477.GUO X J, WANG X, ZHOU D, et al. Paddy soil virus diversity in red soil region under organic fertilization and its effects on biogeographical carbon cycle [J]. Journal of Southern Agriculture, 2022, 53(9): 2468−2477.(in Chinese) [27] 章骁劼. 生物炭、水分和氮源对农田土壤N2O排放和相关微生物的影响[D]. 杭州: 浙江大学, 2017.ZHANG X J. Effects of incorporation of biochar, moisture content and nitrogen source on N2O emissions and related microorganisms abundance in A farmland soil[D]. Hangzhou: Zhejiang University, 2017. (in Chinese) [28] 苏星源, 吴世杰, 高威, 等. 两种水分含量下生物质炭对黑土N2O排放及硝化反硝化基因丰度的影响 [J]. 土壤, 2022, 54(5):928−935.SU X Y, WU S J, GAO W, et al. Effects of biochar on N2O emission and nitrification-denitrification gene abundances under two water status in black soils [J]. Soils, 2022, 54(5): 928−935.(in Chinese) [29] 李娜. 地膜覆盖和施氮肥对关中秸秆还田下夏玉米土壤N2O排放和土壤质量的影响[D]. 杨凌: 西北农林科技大学, 2021.LI N. Effects of plastic film mulching and nitrogen application on soil N2O emission and soil quality of summer maize field with straw incorporation in Guanzhong[D]. Yangling: Northwest A & F University, 2021. (in Chinese) [30] 程伯豪. 秸秆还田配施化肥对关中地区麦-玉轮作田N2O排放效应的影响[D]. 杨凌: 西北农林科技大学, 2022CHENG B H. Effects of straw returning and fertilizer application on N2O emissions in A wheat-maize cropping system in Guanzhong area[D]. Yangling: Northwest A & F University, 2022. (in Chinese) [31] 张杰, 刘梦云, 张萌萌, 等. 黄土台塬不同林型土壤主要温室气体通量特征 [J]. 农业环境科学学报, 2019, 38(4):944−956.ZHANG J, LIU M Y, ZHANG M M, et al. Characteristics of soil greenhouse gas fluxes under different forest types in the Loess Plateau tableland, China [J]. Journal of Agro-Environment Science, 2019, 38(4): 944−956.(in Chinese) [32] WANG L, XING X Y, QIN H L, et al. N(2)O consumption ability of submerged paddy soil and the regulatory mechanism [J]. Huan Jing Ke Xue= Huanjing Kexue, 2017, 38(4): 1633−1639. [33] 董印丽, 李振峰, 王若伦, 等. 华北地区小麦、玉米两季秸秆还田存在问题及对策研究 [J]. 中国土壤与肥料, 2018(1):159−163.DONG Y L, LI Z F, WANG R L, et al. Study on the problems and countermeasures of returning wheat and corn stalks into the soil in North China [J]. Soil and Fertilizer Sciences in China, 2018(1): 159−163.(in Chinese) [34] 王青霞, 陈喜靖, 喻曼, 等. 秸秆还田对稻田氮循环微生物及功能基因影响研究进展 [J]. 浙江农业学报, 2019, 31(2):333−342.WANG Q X, CHEN X J, YU M, et al. Research progress on effects of straw returning on nitrogen cycling microbes and functional genes in paddy soil [J]. Acta Agriculturae Zhejiangensis, 2019, 31(2): 333−342.(in Chinese) [35] 张莉, 王婧, 逄焕成, 等. 短期秸秆颗粒还田对小麦-玉米系统作物产量与土壤呼吸的影响 [J]. 应用生态学报, 2018, 29(2):565−572. doi: 10.13287/j.1001-9332.201802.030ZHANG L, WANG J, PANG H C, et al. Effects of short-term granulated straw incorporation on grain yield and soil respiration in awinter wheat-summer maize cropping system [J]. Chinese Journal of Applied Ecology, 2018, 29(2): 565−572.(in Chinese) doi: 10.13287/j.1001-9332.201802.030 [36] MILLS H J, HUNTER E, HUMPHRYS M, et al. Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern gulf of Mexico [J]. Appl Environ Microbiol, 2008, 74(14): 4440−4453. doi: 10.1128/AEM.02692-07 [37] 邢力. 华北农田玉米根区N2O排放特征及其驱动机制[D]. 保定: 河北农业大学, 2022.XING L. Characteristics and driving mechanism of N2O emission from maize root-zone in North China[D]. Baoding: Hebei Agricultural University, 2022. (in Chinese) [38] ZHANG L, WANG X T, WANG J E, et al. Effects of alpine meadow degradation on nitrifying and denitrifying microbial communities, and N [J]. Soil Research, 2021, 60(2): 158−172. doi: 10.1071/SR21097 [39] LI L, HU R C, HUANG J K, et al. A farmland biodiversity strategy is needed for China [J]. Nature Ecology & Evolution, 2020, 4(6): 772−774. [40] LIU W Z, YAO L, JIANG X L, et al. Sediment denitrification in Yangtze Lakes is mainly influenced by environmental conditions but not biological communities [J]. Science of the Total Environment, 2018, 616/617: 978−987. doi: 10.1016/j.scitotenv.2017.10.221