Genetics of Preserved Pushi Black Pigs Analyzed Using SNP Chip
-
摘要:
目的 通过SNP芯片技术分析浦市黑猪群体遗传多样性和家系结构,为保护和利用浦市黑猪资源提供支撑。 方法 利用“中芯一号”50K SNP芯片,对79头成年浦市黑猪(10头公猪、69头母猪)进行SNP测定,采用多种分析软件(Plink、Gmatix及Mega X)对群体遗传多样性和亲缘关系开展分析,进而构建群体家系结构。 结果 在79头浦市黑猪中共检出57466个SNPs位点,平均基因型检出率为99.15%。遗传多样性分析提示SNP位点具有多态性,群体存在近交(有效群体含量Ne仅为1.5,且平均观察杂合度<平均期望杂合度)。群体平均状态同源(Idengtical by state,IBS)遗传距离为(0.294 9±0.072 6),公猪为(0.277 1±0.091 8),共检测到长纯合片段(Runs of hemozygosity,ROH)(29.60±16.12)个,其中长度在0~100 Mb的占40.5%,且群体基于ROH的平均近交系数为0.108。IBS距离矩阵、G矩阵结果以及群体ROH值的分析结果均反映出群体内个体之间存在较近的亲缘关系。根据群体进化树结果,将群体划分成2个含公猪的家系,以及1个不含公猪的家系。 结论 浦市黑猪群体家系少,各家系的个体数量差异大,近交程度高。因此,应注重引入或创建新的血统,扩大有效群体含量,降低近交系数。 Abstract:Objective Genetic diversity and family structure of a preserved population of Pushi black pig were analyzed using the SNP bead chip for resource conservation. Method SNPs of 79 adult Pushi black pigs consisting of 10 boars and 69 sows were determined using Porcine 50K SNP Beadchips. Software, including Plink, Gmatix, and Mega X, was used to analyze the genetic diversity and phylogenetic relationships to construct phylogenetic structure of the pig population. Result A total of polymorphic 57466 SNP loci were found with an average genotype detection rate of 99.15%. The population showed evidence of inbreeding as the effective Ne was merely 1.5 and the average observed heterozygosity slightly below the expected level. The average distance of IBS was (0.2949±0.0726) and that for the boars (0.277 1±0.091 8). A total of (29.60±16.12) ROHs were detected with 40.5% of them between 0 and 100 Mb in length. The average inbreeding coefficient based on ROH was 0.108. The analysis on IBS distance matrix, G matrix, and population ROHs indicated a close genetic relationship among the individual animals. Based on the evolutionary tree, the population was divided into two families containing boars and one without. Conclusion The population of Pushi black pigs under study had only a few families, which varied greatly in number of members in each family and showed a high degree of inbreeding. Consequently, introducing or creating new lineages to expand the gene pool and reduce inbreeding coefficient for the population seemed imperative. -
Key words:
- Pushi black pig /
- preserved population /
- SNP chip /
- genetic diversity /
- phylogenetic relationship
-
图 9 基于ROH的近交系数可视化结果
P1代表浦市黑猪群体FROH的中位数,P2和P3分别代表浦市黑猪群体FROH的上四分位数和下四分位数。图中越宽的部分表示处于该水平值的群体FROH的样本数越多,反之则越少。
Figure 9. Visualized inbreeding coefficient based on ROH
P1: Median FROH of Pushi black pigs; P2 and P3: upper and lower quartile FROH of Pushi black pigs, respectively; wider portion indicates more samples at median FROH.
-
[1] 国家畜禽遗传资源委员会组. 中国畜禽遗传资源志-猪志[M]. 北京: 中国农业出版社, 2011. [2] 朱吉, 孙建帮, 彭英林, 等. 湖南部分地方猪种的骨质分析 [J]. 养猪, 2011(4):69−70. doi: 10.13257/j.cnki.21-1104/s.2011.04.030ZHU J, SUN J B, PENG Y L, et al. Bone analysis of some local pig breeds in Hunan Province [J]. Swine Production, 2011(4): 69−70.(in Chinese) doi: 10.13257/j.cnki.21-1104/s.2011.04.030 [3] 张庸萍, 田军, 田秀菊, 等. 湘西州湘西黑猪养殖现状调查与思考 [J]. 湖南畜牧兽医, 2018(5):1−3.ZHANG Y P, TIAN J, TIAN X J, et al. Investigation and thinking on the current situation of Xiangxi black pig breeding in Xiangxi Prefecture [J]. Hunan Journal of Animal Science & Veterinary Medicine, 2018(5): 1−3.(in Chinese) [4] ELLEGREN H, GALTIER N. Determinants of genetic diversity [J]. Nature Reviews Genetics, 2016, 17(7): 422−433. doi: 10.1038/nrg.2016.58 [5] 李文婷. 基于全基因组SNP对猪品种分子种质特性挖掘与保护的研究[D]. 北京: 中国农业大学, 2017.LI W T. Using genome-wide SNP dataset to reveal and conserve molecular breed characterization in pigs[D]. Beijing: China Agricultural University, 2017. (in Chinese) [6] AI H S, FANG X D, YANG B, et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing [J]. Nature Genetics, 2015, 47(3): 217−225. doi: 10.1038/ng.3199 [7] 张冬杰, 刘娣, 何鑫淼, 等. 中国地方猪品种的遗传多样性与聚类分析 [J]. 畜牧与兽医, 2015, 47(10):1−4.ZHANG D J, LIU D, HE X M, et al. Diversity and cluster analysis of China local pig breeds [J]. Animal Husbandry & Veterinary Medicine, 2015, 47(10): 1−4.(in Chinese) [8] AI H S, YANG B, LI J, et al. Population history and genomic signatures for high-altitude adaptation in Tibetan pigs [J]. BMC Genomics, 2014, 15(1): 834. doi: 10.1186/1471-2164-15-834 [9] 宋玉朴, 孙永峰, 冯自强, 等. SNP分型检测技术及其在畜禽遗传和育种中的应用研究进展 [J]. 中国畜牧杂志, 2021, 57(7):37−42. doi: 10.19556/j.0258-7033.20200810-05SONG Y P, SUN Y F, FENG Z Q, et al. Advances in SNP typing techniques and their application in genetic and breeding of livestock and poultry [J]. Chinese Journal of Animal Science, 2021, 57(7): 37−42.(in Chinese) doi: 10.19556/j.0258-7033.20200810-05 [10] 吴华莉, 涂尾龙, 曹建国, 等. SNP技术在猪肉溯源过程中的应用 [J]. 畜牧与饲料科学, 2020, 41(6):84−89. doi: 10.12160/j.issn.1672-5190.2020.06.016WU H L, TU W L, CAO J G, et al. Application of SNP technology in pork traceability [J]. Animal Husbandry and Feed Science, 2020, 41(6): 84−89.(in Chinese) doi: 10.12160/j.issn.1672-5190.2020.06.016 [11] 陶璇, 杨雪梅, 梁艳, 等. 基于SNP芯片的丫杈猪保种群体遗传结构研究[J/OL]. 畜牧兽医学报, 2023: 1-13. (2023-03-25). https://kns.cnki.net/kcms/detail/11.1985.S.20230324.1114.002.html.TAO X, YANG X M, LIANG Y, et al. Analysis of genetic structure of conservation population in yacha pig based on SNP chip[J/OL]. Acta Veterinaria et Zootechnica Sinica, 2023: 1-13. (2023-03-25). https://kns.cnki.net/kcms/detail/11.1985.S.20230324.1114.002.html.(in Chinese) [12] 李晓, 崔超, 王源, 等. 基于SNP芯片对里岔黑猪进行遗传多样性与遗传结构分析的研究 [J]. 中国畜牧杂志, 2022, 58(11):117−122.LI X, CUI C, WANG Y, et al. Study on genetic diversity and genetic structure analysis of Licha black pig based on SNP chip [J]. Chinese Journal of Animal Science, 2022, 58(11): 117−122.(in Chinese) [13] PURCELL S, NEALE B, TODD-BROWN K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses [J]. American Journal of Human Genetics, 2007, 81(3): 559−575. doi: 10.1086/519795 [14] 孙浩, 王振, 张哲, 等. 基于基因组测序数据的梅山猪保种现状分析 [J]. 上海交通大学学报(农业科学版), 2017, 35(4):65−70.SUN H, WANG Z, ZHANG Z, et al. Exploring the current situation of conservation of Meishan pigs based on genome sequencing data [J]. Journal of Shanghai JiaoTong University (Agricultural Science), 2017, 35(4): 65−70.(in Chinese) [15] VANRADEN P M. Efficient methods to compute genomic predictions [J]. Journal of Dairy Science, 2008, 91(11): 4414−4423. doi: 10.3168/jds.2007-0980 [16] SVED J A. Linkage disequilibrium and homozygosity of chromosome segments in finite populations [J]. Theoretical Population Biology, 1971, 2(2): 125−141. doi: 10.1016/0040-5809(71)90011-6 [17] KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms [J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096 [18] XU P, WANG X P, NI L G, et al. Genome-wide genotyping uncovers genetic diversity, phylogeny, signatures of selection, and population structure of Chinese Jiangquhai pigs in a global perspective1 [J]. Journal of Animal Science, 2019, 97(4): 1491−1500. doi: 10.1093/jas/skz028 [19] MUÑOZ M, BOZZI R, GARCÍA-CASCO J, et al. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip [J]. Scientific Reports, 2019, 9: 13546. doi: 10.1038/s41598-019-49830-6 [20] WANG Y P, ZHAO X Y, WANG C, et al. High-density single nucleotide polymorphism chip-based conservation genetic analysis of indigenous pig breeds from Shandong Province, China [J]. Animal Bioscience, 2021, 34(7): 1123−1133. doi: 10.5713/ajas.20.0339 [21] BARBATO M, OROZCO-TERWENGEL P, TAPIO M, et al. SNeP: A tool to estimate trends in recent effective population size trajectories using genome-wide SNP data [J]. Frontiers in Genetics, 2015, 6: 109. [22] 罗元宇. 华南地方猪连锁不平衡分析及有效群体大小估计[D]. 广州: 华南农业大学, 2016.LUO Y Y. Analysis of lingkage disequilibrium and estimation of effective population size in southern Chinese indigenous pig breeds[D]. Guangzhou: South China Agricultural University, 2016. (in Chinese) [23] 邓俊, 刘艺端, 许文坤, 等. 基于SNP芯片撒坝猪保种群体的遗传结构分析 [J]. 中国饲料, 2022(17):7−11. doi: 10.15906/j.cnki.cn11-2975/s.20221702DENG J, LIU Y D, XU W K, et al. Genetic structure analysis of a conserved population of Saba pigs based on SNP chips [J]. China Feed, 2022(17): 7−11.(in Chinese) doi: 10.15906/j.cnki.cn11-2975/s.20221702 [24] LIU B, SHEN L Y, GUO Z X, et al. Single nucleotide polymorphism-based analysis of the genetic structure of Liangshan pig population [J]. Animal Bioscience, 2021, 34(7): 1105−1115. doi: 10.5713/ajas.19.0884 [25] 刘彬, 沈林園, 陈映, 等. 基于SNP芯片分析青峪猪保种群体的遗传结构 [J]. 畜牧兽医学报, 2020, 51(2):260−269. doi: 10.11843/j.issn.0366-6964.2020.02.007LIU B, SHEN L Y, CHEN Y, et al. Analysis of genetic structure of conservation population in Qingyu pig based on SNP chip [J]. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(2): 260−269.(in Chinese) doi: 10.11843/j.issn.0366-6964.2020.02.007 [26] 徐忠. 基于基因组信息对金华猪种质特性及其保护、利用的研究[D]. 上海: 上海交通大学, 2020.XU Z. Study on breed characters, conservation and utilization of Jinhua pigs based on genomic information[D]. Shanghai: Shanghai Jiaotong University, 2020. (in Chinese) [27] 孙浩. 基于基因组信息的撒坝猪种质特性及其保护、利用研究[D]. 上海: 上海交通大学, 2020.SUN H. Study on breed characters, conservation and utilization of Saba pigs based on genomic information[D]. Shanghai: Shanghai Jiaotong University, 2020. (in Chinese) [28] 黄敏. 利用全基因组高密度SNP芯片解析中国代表性地方猪种群体遗传结构及其高原适应性与两头乌毛色形成的分子机制[D]. 南昌: 江西农业大学, 2019.HUANG M. Unravel the population genetical structure pf typical Chinese aboriginal pig breeds and dissect the molecular mechanism of coat color and population adaptability using selt-designed high density whole-genome SNP chip[D]. Nanchang: Jiangxi Agricultural University, 2019. (in Chinese) [29] SANCRISTOBAL M, CHEVALET C, HALEY C S, et al. Genetic diversity within and between European pig breeds using microsatellite markers [J]. Animal Genetics, 2006, 37(3): 189−198. doi: 10.1111/j.1365-2052.2005.01385.x [30] 肖倩. 浦东白猪种质特性及其保护与利用研究[D]. 上海: 上海交通大学, 2017.XIAO Q. Study on breed characters, conservation and utilization of Pudong white pigs[D]. Shanghai: Shanghai Jiaotong University, 2017. (in Chinese) [31] 綦文晶, 郭晓萍, 兰干球, 等. 广西3个品种猪的微卫星遗传多样性分析 [J]. 基因组学与应用生物学, 2016, 35(8):2032−2039. doi: 10.13417/j.gab.035.002032QI W J, GUO X P, LAN G Q, et al. Microsatellite analysis of genetic diversity of three pig breeds in Guangxi [J]. Genomics and Applied Biology, 2016, 35(8): 2032−2039.(in Chinese) doi: 10.13417/j.gab.035.002032 [32] 曹果清, 薛尚君, 杨文平, 等. 山西白猪高产仔母系繁殖性能测定 [J]. 中国畜牧兽医, 2009, 36(4):111−114.CAO G Q, XUE S J, YANG W P, et al. Study on the reproductive performance of specialized dam line with high farrowing rate of Shanxi white pig [J]. China Animal Husbandry & Veterinary Medicine, 2009, 36(4): 111−114.(in Chinese) [33] 蔡春波, 张雪莲, 张万峰, 等. 运用SNP芯片评估马身猪保种群体的遗传结构 [J]. 畜牧兽医学报, 2021, 52(4):920−931. doi: 10.11843/j.issn.0366-6964.2021.04.008CAI C B, ZHANG X L, ZHANG W F, et al. Evaluation of genetic structure in Mashen pigs conserved population based on SNP chip [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 920−931.(in Chinese) doi: 10.11843/j.issn.0366-6964.2021.04.008 [34] 刘刚, 孙飞舟, 朱芳贤, 等. 连续性纯合片段在畜禽基因组研究中的应用 [J]. 遗传, 2019, 41(4):304−317. doi: 10.16288/j.yczz.18-287LIU G, SUN F Z, ZHU F X, et al. Runs of homozygosity and its application on livestock genome study [J]. Hereditas, 2019, 41(4): 304−317.(in Chinese) doi: 10.16288/j.yczz.18-287 [35] SILIÓ L, RODRÍGUEZ M C, FERNÁNDEZ A, et al. Measuring inbreeding and inbreeding depression on pig growth from pedigree or SNP-derived metrics [J]. Journal of Animal Breeding and Genetics, 2013, 130(5): 349−360. doi: 10.1111/jbg.12031 [36] BOSSE M, MEGENS H J, MADSEN O, et al. Regions of homozygosity in the porcine genome: Consequence of demography and the recombination landscape [J]. PLoS Genetics, 2012, 8(11): e1003100. doi: 10.1371/journal.pgen.1003100