Summertime Photosynthesis, Carbon-fixation, Oxygen-release, Atmosphere-cooling, and Humidifying Effect of Landscape Plants in Suzho
-
摘要:
目的 探究苏州市常见园林树种固碳释氧、降温增湿的能力。 方法 以苏州市白鹭园13种园林植物为研究对象,通过测定其光合生理指标,分析植物固碳释氧、降温增湿的综合效率及其影响因素。 结果 (1)13种植物净光合速率日变化主要呈单峰型和双峰型2种,蒸腾速率日变化主要呈单峰型。(2)单位叶面积日固碳量和释氧量最高的是榔榆(Ulmus parvifolia),分别为12.08、8.78 g·m−2·d−1,最低的是红枫(Acer palmatum 'Atropurpureum'),分别为3.50、2.54 g·m−2·d−1。单位叶面积日降温量和增湿量最高的是木槿(Hibiscus syriacus),分别为0.38 ℃和2376.15 g·m−2·d−1,红枫最低,分别为0.14 ℃和848.01 g·m−2·d−1。(3)园林植物固碳增湿量与净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、大气湿度(RH)、光合有效辐射(PAR)呈显著正相关,与叶面水气压亏缺(Vpdl)呈显著负相关。 结论 基于提高城市绿地碳汇功能和缓解热岛效应,在苏州地区乔木中可优选榔榆、朴树(Celtis sinensis)、香樟(Cinnamomum camphora)、垂柳(Salix babylonica)、枫香树(Liquidambar formosana)、重阳木(Bischofia polycarpa)等树种。桂花(Osmanthus fragrans)、珊瑚树(Viburnum odoratissimum)和木槿单位土地面积日固碳释氧、降温增湿效益差距不大。 Abstract:Objective Beneficial effects of landscape plants in Suzhou on carbon-fixation, oxygen-release, atmosphere-cool, and humidity-increase during summer season were studied. Method Physiologically, the photosynthetic indicators of 13 varieties of plants at Bailu Garden in in Suzhou were monitored during the summer to determine their effects on the surrounding atmospheric carbon, oxygen, temperature, and humidity. Result (1) The diurnal variation on the net photosynthetic rate of the plants was mainly unimodal and bimodal, while that of the transpiration rate basically unimodal. (2) The greatest per leaf area daily carbon-fixation of 12.08 g·m−2·d−1 and oxygen-release of 8.78 g·m−2·d−1 were found on Ulmus parvifolia, while the lowest 3.50 g·m−2·d−1 and 2.54 g·m−2·d−1, respectively, on Acer palmatum Atropurpureum. The highest per leaf area daily cooling and humidifying effects of 0.38 ℃ and 2 376.15 g·m−2·d−1, respectively, were rendered by Hibiscus syriacus, whereas the lowest 0.14 ℃ and 848.01 g·m−2·d−1, respectively, by A. palmatum Atropurpureum. And (3) the carbon sequestration and humidification of the plants correlated positively with the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), atmospheric humidity (RH), and photosynthetically active radiation (PAR) but negatively with the leaf water vapor pressure deficit (Vpdl). Conclusion Through increasing carbon sink and mitigating hot-island effect in the surroundings with plants such as U. parvifolia, Celtis sinensis, Cinnamomum camphora, Salix babylonica, Liquidambar formosana, and Bischofia polycarpa, urban Suzhou could be environmentally improved. On the other hand, Osmanthus fragrans, Viburnum odoratissimum, and H. syriacus did not seem to offer significant benefits in that regard. -
表 1 13种园林植物基本信息
Table 1. Basic information on 13 species of landscape plants in Suzhou
树种
Tree species类型
Type平均胸径
Mean DBH/cm平均冠幅
Average crown width/m平均高度
Average height/m冠高
Crown height/m香樟
Cinnamomum camphora常绿乔木
Evergreen trees33.37±0.87 a 9.25±0.15 a 11.00±0.46 bc 6.67±0.25 b 广玉兰
Magnolia grandiflora常绿乔木
Evergreen trees25.43±0.95 de 6.07±0.06 ef 8.10±0.53 f 4.50±0.10 e 枫香树
Liquidambar formosana落叶乔木
Deciduous trees27.27±1.11 c 8.20±0.10 b 13.63±0.21 a 9.17±0.25 a 榔榆
Ulmus parvifolia落叶乔木
Deciduous trees26.80±0.70 cd 5.82±0.06 g 8.43±0.31 ef 5.67±0.21 d 榉树
Zelkova serrata落叶乔木
Deciduous trees27.30±0.95 c 7.60±0.13 c 9.37±0.50 d 6.23±0.23 c 朴树
Celtis sinensis落叶乔木
Deciduous trees24.70±1.08 e 6.27±0.16 e 9.07±0.25 de 4.73±0.21 e 垂柳
Salix babylonica落叶乔木
Deciduous trees26.50±0.70 cd 5.93±0.10 fg 10.33±0.50 c 6.20±0.26 c 重阳木
Bischofia polycarpa落叶乔木
Deciduous trees29.5±0.82 b 6.73±0.03 d 11.10±0.30 b 6.37±0.12 bc 白玉兰
Yulania denudata落叶乔木
Deciduous trees15.10±0.20 f 4.32±0.23 i 5.57±0.40 g 3.87±0.32 f 红枫
Acer palmatum 'Atropurpureum'落叶乔木
Deciduous trees12.23±0.23 h 2.15±0.09 k 3.00±0.26 i 1.53±0.15 i 桂花
Osmanthus fragrans常绿灌木
Evergreen shrubs— 4.68±0.03 h 4.97±0.23 gh 3.73±0.15 fg 珊瑚树
Viburnum
odoratissimum常绿灌木
Evergreen shrubs— 3.80±0.05 j 4.30±0.20 h 3.37±0.15 gh 木槿
Hibiscus syriacus落叶灌木
Deciduous shrubs— 3.87±0.15 j 4.53±0.15 h 3.13±0.06 h 同列数据后不同小写字母表示不同树种间在 0.05 水平差异显著。
Data with different lowercase letters on same column indicate significant differences at level of 0.05.表 2 13种园林植物单位叶面积日固碳释氧、降温增湿量
Table 2. Per leaf area daily carbon-fixation, oxygen-release, atmosphere-cooling, and humidifying effect of 13 landscape plants
树种
Tree species总同化量
$ {P} $/(mmol·m−2·d−1)单位叶面积日固碳量
$ {{W}}_{{{{\rm{co}}}}_{{2}}{}} $/(g·m−2·d−1)单位叶面积日释氧量
$ {{W}}_{{{{\rm{o}}}}_{{2}}{}} $/(g·m-2·d-1)总蒸腾量
$ {E} $ /(mmol·m−2·d−1)单位叶面积日增湿量
$ {{W}}_{{{{\rm{H}}}}_{{2}}{{\rm{O}}}} $/(g·m−2·d−1)单位叶面积日降温量
$ P_{\Delta T} $ /℃香樟 C. camphora 332.37±9.90 a 11.70±0.35 a 8.51±0.25 a 86.38±5.17 de 1554.86±93.02 de 0.25±0.01 de 广玉兰 M. grandiflora 200.61±10.08 d 7.06±0.35 d 5.14±0.26 d 54.57±10.66 fg 982.27±191.81 fg 0.16±0.03 fg 枫香树 L. formosana 261.80±9.86 c 9.22±0.35 c 6.70±0.25 c 90.01±7.50 d 1620.30±135.03 d 0.26±0.02 d 榔榆 U. parvifolia 343.16±20.01 a 12.08±0.70 a 8.78±0.51 a 115.37±8.43 bc 2076.73±151.71 bc 0.33±0.02 bc 榉树 Z. serrata 200.65±7.39 d 7.06±0.26 d 5.14±0.19 d 77.03±4.37 e 1386.53±78.58 e 0.22±0.01 e 朴树 C. sinensis 337.41±25.14 a 11.88±0.88 a 8.64±0.64 a 121.65±2.39 ab 2189.66±43.09 ab 0.35±0.00 ab 垂柳 S. babylonica 299.31±7.16 b 10.54±0.25 b 7.66±0.18 b 89.25±6.49 d 1606.47±116.87 d 0.26±0.19 d 重阳木 B. polycarpa 276.45±6.50 bc 9.73±0.23 bc 7.08±0.17 bc 106.05±2.92 d 1908.89±52.54 d 0.31±0.08 d 白玉兰 Y. denudata 194.78+8.04 de 6.86±0.28 de 4.99±0.21 de 61.48±3.02 f 1106.72±54.38 f 0.18±0.01 f 红枫 A. palmatum 99.36±2.63 f 3.50±0.09 f 2.54±0.07 f 47.11±1.60 g 848.01±28.80 g 0.14±0.00 g 桂花O. fragrans 174.60±10.21 e 6.15±0.36 e 4.47±0.26 e 56.98±3.81 fg 1025.67±68.55 fg 0.16±0.01 fg 珊瑚树 V. odoratissimum 203.46±11.06 d 7.16±0.39 d 5.21±0.28 d 61.95±0.61 f 1115.02±11.04 f 0.18±0.00 f 木槿 H. syriacus 271.08±5.78 c 9.54±0.20 c 6.94±0.15 c 132.01±5.70 a 2376.15±102.55 a 0.38±0.16 a 常绿树种 Evergreen species 182.21±51.81 8.02±2.28 5.83±1.66 64.97±14.23 1169.46±256.22 0.19±0.04 落叶树种 Deciduous species 203.02±60.16 8.93±2.64 6.50±1.93 93.33±27.50 1679.94±495.00 0.27±0.08 乔木 Arbor 203.67±61.87 8.96±2.72 6.52±1.98 84.89±24.85 1528.05±447.25 0.25±0.07 灌木 Shrub 173.10±34.91 7.62±1.54 5.54±1.12 83.65±36.50 1505.62±656.97 0.24±0.11 平均值 Average value 196.62±57.86 8.65±2.55 6.29±1.85 84.60±27.42 1522.87±493.58 0.24±0.08 表 3 13种园林植物单位土地面积日固碳释氧、降温增湿量
Table 3. Per leaf area daily carbon-fixation, oxygen-release, atmosphere-cooling, and humidifying effect of 13 landscape plants
树种
Tree species单株绿量
Green quantity per
plant/m3叶面积指数
LAI单位土地面积
日固碳量
$ {{Q}}_{{{{\rm{CO}}}}_{{2}}} $/(g·m−2·d−1)单位土地面积
日释氧量
$ {{Q}}_{{{{\rm{O}}}}_{{2}}} $/(g·m−2·d−1)单位土地面积
日增湿量
$ {{V}}_{{{{\rm{H}}}}_{{2}}{{\rm{O}}}} $/(g·m−2·d−1)单位土地面积
日降温量
PΔT/℃香樟 C. camphora 298.33±2.12 b 3.54±0.35 bc 41.42±1.23 a 30.12±0.90 a 5504.21±329.28 e 0.88±0.05 e 广玉兰 M. grandiflora 86.66±0.97 g 3.64±0.65 abc 25.70±1.29 c 18.69±0.94 c 3575.48±698.18 fg 0.57±0.11 fg 枫香树 L. formosana 322.45±1.46 a 3.61±0.27 bc 33.27±1.25 b 24.19±0.91 b 5849.29±487.47 de 0.94±0.08 de 榔榆 U. parvifolia 100.29±1.79 f 3.58±0.37 bc 43.24±2.52 a 31.45±1.83 a 7434.69±543.12 ab 1.19±0.09 ab 榉树 Z. serrata 188.30±1.30 c 3.72±0.26 abc 26.27±0.97 c 19.11±0.70 c 5157.91±292.30 e 0.83±0.05 e 朴树 C. sinensis 97.18±1.90 f 3.47±0.30 c 41.21±3.07 a 29.97±2.23 a 7598.12±149.51 a 1.22±0.02 a 垂柳 S. babylonica 114.14±0.97 e 3.92±0.35 ab 41.30±0.99 a 30.04±0.72 a 6297.37±458.11 cd 1.01±0.07 cd 重阳木 B. polycarpa 151.05±1.43 d 3.54±0.62 bc 34.45±0.80 b 25.05±0.59 b 6757.47±186.00 bc 1.08±0.03 bc 白玉兰 Y. denudata 37.59±2.26 i 2.16±0.35 e 14.81±0.61 e 10.77±0.44 e 2390.52±117.45 h 0.38±0.02 h 红枫 A. palmatum 3.73±0.62 k 1.94±0.37 e 6.78±0.18 f 4.93±0.13 f 1645.13±55.86 i 0.26±0.01 i 桂花 O. fragrans 42.86±1.93 h 4.04±0.33 a 24.83±1.45 c 18.06±1.06 c 4143.72±276.95 f 0.66±0.04 f 珊瑚树 V. odoratissimum 38.16±1.70 i 3.05±0.40 d 21.84±1.19 d 15.88±0.86 d 3400.81±33.68 g 0.55±0.01 g 木槿 H. syriacus 24.55±2.04 j 2.73±0.30 d 26.05±0.56 c 18.95±0.40 c 6486.90±279.97 cd 1.04±0.04 cd 常绿树种 Evergreen species 113.63±113.92 3.57±0.56 28.45±8.04 20.69±5.85 4156.05±930.44 0.67±0.15 落叶树种 Deciduous species 114.97±93.01 3.19±0.77 29.71±12.11 21.61±8.81 5513.05±2059.39 0.88±0.33 乔木 Arbor 139.51±99.24 3.31±0.76 30.85±12.03 22.43±8.75 5221.02±2010.00 0.84±0.32 灌木 Shrub 31.37±11.84 3.27±0.66 24.24±2.11 17.63±1.54 4677.14±1408.85 0..75±0.23 平均值 Average value 114.56±98.37 3.30±0.73 29.32±10.93 21.32±7.95 5095.51±1885.46 0.82±0.30 表 4 13种园林植物光合特性相关性分析
Table 4. Correlation between photosynthetic characteristics of 13 landscape plants
指标Index Pn Gs Ci Tr Vpdl Ta Tl Ca RH PAR Wco2 WH2O Pn 1 Gs 0.862** 1 Ci 0.012 0.391** 1 Tr 0.827** 0.826** 0.113 1 Vpdl −0.291** −0.440** −0.547** 0.043 1 Ta −0.205 −0.356** −0.496** 0.132 0.960** 1 Tl −0.204 −0.352** −0.494** 0.138 0.962** 1.000** 1 Ca −0.674** −0.589** 0.247* −0.701** −0.102 −0.042 −0.047 1 RH 0.313** 0.462** 0.582** −0.011 −0.933** −0.825** −0.830** 0.225* 1 PAR 0.576** 0.394** −0.183 0.642** 0.258* 0.363** 0.360** −0.463** −0.139 1 Wco2 0.977** 0.832** −0.102 0.709** −0.834** −0.728** −0.725** −0.655* 0.903** 0.722** 1 WH2O 0.781** 0.955** 0.379 0.965** −0.622* −0.490 −0.482 −0.546 0.760** 0.659* 0.816** 1 **和*分别表示极显著相关(P<0.01)和显著相关(P<0.05)。
** and * indicate extremely significant correlation(P<0.01) and significant correlation(P<0.05), respectively. -
[1] AKERLOF K, MAIBACH E W, FITZGERALD D, et al. Do people “personally experience” global warming, and if so how, and does it matter? [J]. Global Environmental Change, 2013, 23(1): 81−91. doi: 10.1016/j.gloenvcha.2012.07.006 [2] YANG Q J, SU W Y, LIN Z Q. A microclimate model for plant transpiration effects [J]. Urban Climate, 2022, 45: 101240. doi: 10.1016/j.uclim.2022.101240 [3] NOWAK D J, GREENFIELD E J, HOEHN R E, et al. Carbon storage and sequestration by trees in urban and community areas of the United States [J]. Environmental Pollution, 2013, 178: 229−236. doi: 10.1016/j.envpol.2013.03.019 [4] JO H K, KIM J Y, PARK H M. Carbon reduction and planning strategies for urban parks in Seoul [J]. Urban Forestry & Urban Greening, 2019, 41: 48−54. [5] 于雅鑫, 胡希军, 金晓玲. 12种木兰科乔木固碳释氧和降温增湿能力研究 [J]. 广东农业科学, 2013, 40(6):47−50,60.YU Y X, HU X J, JIN X L. Carbon fixation and oxygen release, cooling and humidification of 12 Magnoliaceae species [J]. Guangdong Agricultural Sciences, 2013, 40(6): 47−50,60.(in Chinese) [6] 郭晖, 周慧, 张家洋. 郑州市15种常见园林树种固碳释氧能力分析研究 [J]. 西北林学院学报, 2017, 32(4):52−56. doi: 10.3969/j.issn.1001-7461.2017.04.09GUO H, ZHOU H, ZHANG J Y. Crbon fixation and oxygen release of 15 common landscape trees in Zhengzhou [J]. Journal of Northwest Forestry University, 2017, 32(4): 52−56.(in Chinese) doi: 10.3969/j.issn.1001-7461.2017.04.09 [7] 陈小丽, 姜卫兵, 魏家星, 等. 南京地区观赏海棠树种固碳释氧与降温增湿效益 [J]. 江苏农业科学, 2017, 45(24):123−128.CHEN X L, JIANG W B, WEI J X, et al. Benefits of carbon fixation and oxygen release, cooling and humidification of ornamental begonia trees in Nanjing area [J]. Jiangsu Agricultural Sciences, 2017, 45(24): 123−128.(in Chinese) [8] 张艳丽, 费世民, 李智勇, 等. 成都市沙河主要绿化树种固碳释氧和降温增湿效益 [J]. 生态学报, 2013, 33(12):3878−3887. doi: 10.5846/stxb201205080672ZHANG Y L, FEI S M, LI Z Y, et al. Carbon sequestration and oxygen release as well as cooling and humidification efficiency of the main greening tree species of Sha River, Chengdu [J]. Acta Ecologica Sinica, 2013, 33(12): 3878−3887.(in Chinese) doi: 10.5846/stxb201205080672 [9] 薛雪, 张金池, 孙永涛, 等. 上海常绿树种固碳释氧和降温增湿效益研究 [J]. 南京林业大学学报(自然科学版), 2016, 40(3):81−86.XUE X, ZHANG J C, SUN Y T, et al. Study of carbon seqestration & oxygen release and cooling & humidifying effect of main greening tree species in Shanghai [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(3): 81−86.(in Chinese) [10] 邵永昌, 庄家尧, 王柏昌, 等. 上海地区主要绿化树种夏季光合特性和固碳释氧能力研究 [J]. 安徽农业大学学报, 2016, 43(1):94−101.SHAO Y C, ZHUANG J Y, WANG B C, et al. Photosynthetic characteristics and carbon sequestration and oxygen release capacity of the main urban landscape tree species during summer in Shanghai [J]. Journal of Anhui Agricultural University, 2016, 43(1): 94−101.(in Chinese) [11] 胡耀升, 么旭阳, 刘艳红. 北京市几种绿化树种的光合特性及生态效益比较 [J]. 西北农林科技大学学报(自然科学版), 2014, 42(10):119−125.HU Y S, YAO X Y, LIU Y H. Photosynthetic characteristics and ecological benefits of greening tree species in Beijing [J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(10): 119−125.(in Chinese) [12] 孙方虎, 方凤满, 洪炜林, 等. 基于PLUS和InVEST模型的安徽省碳储量演化分析与预测 [J]. 水土保持学报, 2023, 37(1):151−158.SUN F H, FANG F M, HONG W L, et al. Evolution analysis and prediction of carbon storage in Anhui Province based on PLUS and InVEST model [J]. Journal of Soil and Water Conservation, 2023, 37(1): 151−158.(in Chinese) [13] 周坚华, 孙天纵. 三维绿色生物量的遥感模式研究与绿化环境效益估算 [J]. 环境遥感, 1995(3):162−174.ZHOU J H, SUN T Z. Study on remote sensing model of three-dimensional green biomass and the estimation of environmental benefits of greenery [J]. National Remote Sensing Bulletin, 1995(3): 162−174.(in Chinese) [14] 李辉, 赵卫智. 北京5种草坪地被植物生态效益的研究 [J]. 中国园林, 1998, 14(4):36−38.LI H, ZHAO W Z. Study on ecological benefits of five lawn ground cover plants in Beijing [J]. Journal of Chinese Landscape Architecture, 1998, 14(4): 36−38.(in Chinese) [15] 姚侠妹, 偶春, 夏璐, 等. 安徽沿淮地区小城镇主要景观树种固碳释氧和降温增湿效益评估 [J]. 生态学杂志, 2021, 40(5):1293−1304.YAO X M, OU C, XIA L, et al. Benefit evaluation of carbon sequestration, oxygen release, cooling and humidifying of the main landscape tree species in small towns along Huaihe River in Anhui Province [J]. Chinese Journal of Ecology, 2021, 40(5): 1293−1304.(in Chinese) [16] 冯建灿, 张玉洁. 喜树光合速率日变化及其影响因子的研究 [J]. 林业科学, 2002, 38(4):34−39.FENG J C, ZHANG Y J. Studies on the diurnal changes of net photosynthesis rate and the effect of environmental factors of Camptotheca acuminata [J]. Scientia Silvae Sinicae, 2002, 38(4): 34−39.(in Chinese) [17] 薛雪, 李娟娟, 郑云峰, 等. 5个常绿园林树种的夏季光合蒸腾特性 [J]. 林业科学, 2015, 51(9):150−156.XUE X, LI J J, ZHENG Y F, et al. Characteristics of photosynthesis and transpiration of five evergreen tree species in summer [J]. Scientia Silvae Sinicae, 2015, 51(9): 150−156.(in Chinese) [18] 陈月华, 廖建华, 覃事妮. 长沙地区19种园林植物光合特性及固碳释氧测定 [J]. 中南林业科技大学学报, 2012, 32(10):116−120.CHEN Y H, LIAO J H, QIN S N. Studies on photosynthetic characteristics and carbon fixation and oxygen release capabilities of 19 garden plants in Changsha area [J]. Journal of Central South University of Forestry & Technology, 2012, 32(10): 116−120.(in Chinese) [19] 韩忠明, 王云贺, 林红梅, 等. 吉林不同生境防风夏季光合特性 [J]. 生态学报, 2014, 34(17):4874−4881.HAN Z M, WANG Y H, LIN H M, et al. Photosynthetic characteristics of Saposhnikovia divaricata in different habitats in summer [J]. Acta Ecologica Sinica, 2014, 34(17): 4874−4881.(in Chinese) [20] 张淑勇, 周泽福, 张光灿, 等. 半干旱黄土丘陵区天然次生灌木山桃(Prunus davidiana)与山杏(Prunus sibirica L. )叶片气体交换参数日动态差异 [J]. 生态学报, 2009, 29(1):499−507.ZHANG S Y, ZHOU Z F, ZHANG G C, et al. Changes of gas exchange parameters in leaves of natural secondary shrubs Prunus davidiana and Prunus sibirica L. in semi-arid Loess Hilly region [J]. Acta Ecologica Sinica, 2009, 29(1): 499−507.(in Chinese) [21] VASTAG E, ORLOVIĆ S, KONÔPKOVÁ A, et al. Magnolia grandiflora L. shows better responses to drought than Magnolia × soulangeana in urban environment [J]. IForest - Biogeosciences and Forestry, 2020, 13(6): 575−583. doi: 10.3832/ifor3596-013 [22] 万丽娟, 张毅, 程东祥, 等. 苏南地区常见公路绿化树种光合固碳特征研究 [J]. 四川大学学报(自然科学版), 2018, 55(4):881−888.WAN L J, ZHANG Y, CHENG D X, et al. The photosynthetic carbon fixation characteristics of common tree species for highway greening in southern Jiangsu [J]. Journal of Sichuan University (Natural Science Edition), 2018, 55(4): 881−888.(in Chinese) [23] 董延梅, 章银柯, 郭超, 等. 杭州西湖风景名胜区10种园林树种固碳释氧效益研究 [J]. 西北林学院学报, 2013, 28(4):209−212.DONG Y M, ZHANG Y K, GUO C, et al. Carbon fixation and oxygen release capabilities of 10 garden plants in the west lake scenic area in Hangzhou [J]. Journal of Northwest Forestry University, 2013, 28(4): 209−212.(in Chinese) [24] 薛海丽, 唐海萍, 李延明, 等. 北京常见绿化植物生态调节服务研究 [J]. 北京师范大学学报(自然科学版), 2018, 54(4):517−524.XUE H L, TANG H P, LI Y M, et al. Regulation service of main greening tree species in Beijing [J]. Journal of Beijing Normal University (Natural Science), 2018, 54(4): 517−524.(in Chinese) [25] BRÉDA N J J. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies [J]. Journal of Experimental Botany, 2003, 54(392): 2403−2417. doi: 10.1093/jxb/erg263 [26] DRIESEN E, VAN DEN ENDE W, DE PROFT M, et al. Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review [J]. Agronomy, 2020, 10(12): 1975. doi: 10.3390/agronomy10121975 [27] FLEXAS J, MEDRANO H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited [J]. Annals of Botany, 2002, 89(2): 183−189. doi: 10.1093/aob/mcf027 [28] WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: An overview [J]. Environmental and Experimental Botany, 2007, 61(3): 199−223. doi: 10.1016/j.envexpbot.2007.05.011 [29] 刘东焕, 赵世伟, 高荣孚, 等. 植物光合作用对高温的响应 [J]. 植物研究, 2002, 22(2):205−212.LIU D H, ZHAO S W, GAO R F, et al. Response of plants photosynthesis to higher temperature [J]. Bulletin of Botanical Research, 2002, 22(2): 205−212.(in Chinese) [30] 袁静, 钱晰, 潘哲等. 东太湖地区二氧化碳浓度变化特征研究[C]. 合肥: 中国气象学会, 2018: 736-743. [31] MCADAM S A M, BRODRIBB T J. Linking turgor with ABA biosynthesis: Implications for stomatal responses to vapor pressure deficit across land plants [J]. Plant Physiology, 2016, 171(3): 2008−2016. doi: 10.1104/pp.16.00380