Micro-morphology and Compositions of Epidermal Wax on Waxy Gourd
-
摘要:
目的 探明不同粉皮冬瓜品种表皮蜡粉成分特性,为进一步解析冬瓜表皮蜡粉的分子调控奠定基础。 方法 选择形状不同的2个粉皮冬瓜品种(夏茂粉皮小冬瓜和夏茂粉皮大冬瓜)为试验材料,采用扫描电子显微镜观察表皮蜡粉结构,通过非靶向气相色谱-质谱(GC-MS)检测技术对表皮蜡粉的成分进行分析。 结果 夏茂粉皮小冬瓜和夏茂粉皮大冬瓜表皮均有大量堆叠的杆状蜡粉结构,但夏茂粉皮小冬瓜杆状的前端上还粘附丝状蜡粉。2个品种三萜类物质含量均占比最高(42.09%和35.63%),但酯类和烷烃物质含量占比存在明显差异,夏茂粉皮小冬瓜分别为31.16%和3.53%,夏茂粉皮大冬瓜分别为22.17%和17.34%。在检测出的9类65种成分中,11种化合物在2个品种间呈极显著差异,8种化合物呈显著差异。 结论 冬瓜表皮蜡粉形态结构和成分在不同品种间存在较大差异,不同的蜡粉成分对其结构的形成有重要影响。通过对不同冬瓜品种表皮蜡粉成分的鉴定,为今后明确蜡粉性状在冬瓜中的遗传规律,阐明其遗传分子机制,具有重要的科研和生产实践价值。 Abstract:Objective Micro-morphology and chemical composition of the wax in pericarps of two varieties of waxy gourd were examined. Method The wax on the pericarps of the differently shaped Xiamaofenpixiaodonggua (XFX) and Xiamaofenpidadonggua (XFD) waxy gourds were examined under a scanning electronic microscope. The epidermal wax composition was analyzed by non-targeted gas chromatography-mass spectrometry (GC-MS) metabolomics. Result Numerous stacked rod-like structures covered the surface of XFX and XFD, but the filamentous material appeared only on XFX. Triterpenoids were the most abundant compounds found in the wax, i.e., 42.09% on XFX and 35.63% on XFD. On the other hand, the esters and alkanes differed significantly between the two varieties, which were 31.16% and 3.53%, respectively, on XFX, and 22.17% and 17.34%, respectively, on XFD. In total, 65 substances in 9 categories were identified that included 11 extremely significantly and 8 significantly differentiated compounds. Conclusion The micro-structures and compositions of the epidermal wax of the two waxy gourd varieties were surprisingly different, and the structural differentiation could be chemically related. Further study to decipher the biosynthesis pathway of the waxy gourd is in order. -
Key words:
- Pericarp wax /
- waxy gourds /
- GC-MS /
- structure /
- component
-
表 1 2种粉皮冬瓜表皮蜡粉成分和含量显著性
Table 1. Significance in content of chemical compounds in epidermal wax
组分
Groups序号
Serial number代谢物名称
Metabolites name平均保留时间
Average retention
time/min分子式
Molecular
formula分子量
Molecular
weightP值
P-Value醇类 Alcohols 1 2-己基-1-癸醇 2-Hexyl-1-decanol 7.06 C16H34O 242.44 0.3694 2 2-己基-1-十二烷醇 2-Hexyl-1-dodecanol 10.72 C18H38O 270.49 0.9238 3 1-三十七烷醇 1-Heptatriacotanol 13.03 C37H76O 537.00 0.0848 4 1-庚烯-4-醇 1-Hepten-4-Ol 19.67 C7H14O 114.19 0.7827 5 2-甲基-1-十六烷醇 2-Methylhexadecan-1-ol 10.37 C17H36O 256.47 0.3787 6 2-丁基-1-辛醇 2-Butyl-1-octanol 6.90 C12H26O 186.34 P < 0.05 7 1,30-三十烷二醇 1,30-Triacontanediol 24.24 C30H62O2 454.81 0.1538 8 全反-2,6,10,15,19,23-六甲基-1,6,10,14,18,22-二十四六烯-3-醇
1,6,10,14,18,22-Tetracosahexaen-3-Ol, 2,6,10,15,19,23-Hexamethyl-,
(All-E)-(.+/-.)-22.39 C30H50O 426.72 0.0590 9 11-甲基十二醇 11-Methyldodecanol 6.98 C13H28O 200.36 0.2095 10 2,4-二甲基-3-戊醇 2,4-Dimethyl-3-Pentanol 16.16 C7H16O 116.20 0.1324 11 日耳曼醇Germanicol 25.50 C30H50O 426.72 0.0699 12 十六烷基硫醇 Tert-Hexadecanethiol 8.88 C16H34S 258.50 0.2806 醛类 Aldehydes 13 二十六烷醛 Hexacosanal 18.52 C26H52O 380.70 P < 0.05 14 壬醛 Nonanal 5.06 C9H18O 142.24 P < 0.05 15 二十八烷醛 Octacosanal 21.47 C28H56O 408.74 P < 0.05 16 二十四烷醛 Tetracosanal 16.28 C24H48O 352.64 P < 0.05 酮类 Ketones 17 1-(2,6,6-三甲基-1-环己烯-1-基)-1-戊烯-3-酮
1-(2,6,6-Trimethyl-1-Cyclohexen-1-Yl)-1-Penten-3-One7.68 C14H22O 206.32 0.0842 18 6-甲基-5-(1-甲基亚乙基)-6,8-壬二烯-2-酮
6-Methyl-5-(1-Methylethylidene)-6,8-Nonadien-2-One10.39 C13H20O 192.30 P < 0.05 19 植酮 Phytone 11.21 C18H36O 268.49 P < 0.05 烷烃 Alkanes 20 十五烷 Pentadecane 8.58 C15H32 212.41 0.6509 21 十六烷 Hexadecane 9.40 C16H34 226.44 0.3074 22 十八烷 Octadecane 12.16 C26H54 366.71 P < 0.05 23 十九烷 Nonadecane 8.30 C19H40 268.52 0.3559 24 二十一烷 Heneicosane 12.77 C21H44 296.57 P < 0.05 25 二十三烷 Tricosane 13.92 C23H48 324.63 P < 0.05 26 二十五烷 Pentacosane 15.10 C25H52 352.68 P < 0.05 27 二十七烷 Heptacosane 16.70 C27H56 380.73 P < 0.05 28 二十九烷 Nonacosane 19.12 C29H60 408.79 P < 0.05 29 三十烷 Triacontane 14.47 C30H62 422.81 P < 0.05 30 三十一烷 Hentriacontane 22.04 C31H64 436.84 P < 0.05 31 三十六烷 Hexatriacontane 24.75 C36H74 506.97 P < 0.05 32 四十四烷 Tetratetracontane 20.58 C44H90 619.19 P < 0.05 烯烃 Alkenes 33 α-法呢烯 Alpha.-Farnesene 8.74 C15H24 204.35 0.1223 34 5,5-二甲基-1-乙基-1,3-环戊二烯 1,3-Cyclopentadiene, 5,5-Dimethyl-1-Ethyl- 5.96 C9H14 122.21 0.0649 35 1,5,6,7-四甲基双环[3.2.0]七-2,6-二烯
1,5,6,7-Tetramethylbicyclo [3.2.0]Hepta-2,6-Diene7.93 C11H16 148.24 P < 0.05 36 17-三十五烯 17-Pentatriacontene 21.89 C35H70 490.94 P < 0.05 37 24-去甲乌苏-3,12-二烯 24-Norursa-3,12-Diene 27.10 C29H46 394.68 P < 0.05 38 齐墩果-11,13(18)-二烯 Oleana-11,13(18)-Diene 22.17 C30H48 408.70 P < 0.05 酯类 Esters 39 山嵛醇乙酸酯 1-Docosanol, Acetate 16.01 C24H48O2 368.64 P < 0.05 40 1-萘乙酸,戊基酯 1-Naphthaleneacetic Acid, Pentyl Ester 27.69 C17H20O2 256.34 P < 0.05 41 1,2-苯二羧酸 1-丁基 2-(8-甲基壬基)酯
1,2-Benzenedicarboxylic Acid, Butyl 8-Methylnonyl Ester12.13 C22H34O4 362.50 0.7409 42 1,3,5(10)-雌甾三烯-3,17β-二醇,17-乙酸酯
1,3,5(10)-Estratrien-3,17.Beta.-Diol, 17-Acetate Ester13.38 C20H26O3 314.42 P < 0.05 43 对苯二甲酸二辛酯 1,4-Benzenedicarboxylic Acid, Bis(2-Ethylhexyl) Ester 17.48 C24H38O4 390.56 0.4835 44 10-乙酰氧基-2-羟基-1,2,6a,6b,9,9,12a-七甲基-1,3,4,5,6,6a,6b,7,8,8a,9,10,
11,12,12a,12b,13,14b-十八氢-2h-苉-4a-羧酸,甲基酯
10-Acetoxy-2-Hydroxy-1,2,6a,6b,9,9,12a-Heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,
12,12a,12b,13,14b-Octadecahydro-2h-Picene-4a-Carboxylic Acid, Methyl Ester22.48 C33H52O5 528.76 0.0599 45 花生酸花生基酯 Eicosanoic Acid, Eicosyl Ester 35.73 C40H80O2 593.06 P < 0.05 46 (3β,13β,14β)-13,27-环乌苏n-3-醇,乙酸酯
(3.Beta.,13.Beta.,14.Beta.)-13,27-Cycloursan-3-Ol, Acetate27.94 C32H52O2 468.77 P < 0.05 47 4,8,12,16-四甲基十七烷-4-内酯
4,8,12,16-Tetramethylheptadecan-4-Olide14.38 C21H40O2 324.54 P < 0.05 48 蜡酸甲酯C26 Hexacosanoic Acid, Methyl Ester 19.80 C27H54O2 410.72 P < 0.05 49 α,β-二棕榈酸甘油酯
Hexadecanoic Acid, 1-(Hydroxymethyl)-1,2-Ethanediyl Ester10.03 C16H15N3O2 281.31 P < 0.05 50 乙酸橙花叔醇酯 Nerolidyl Acetate 27.33 C17H28O2 264.40 P < 0.05 51 丙烯酸四氢糠基酯 Tetrahydrofurfuryl Acrylate 19.68 C8H12O3 156.18 P < 0.05 脂肪酸 Fatty acids 52 异丁酸 Isobutyric acid 21.12 C4H8O2 88.11 0.7293 53 二甘醇酐 1,4-Dioxane-2,6-Dione 28.59 C4H4O4 116.07 0.3623 三萜类 Triterpenes 54 白桦脂醛 Betulinaldehyde 28.61 C30H48O2 440.70 P < 0.05 55 角鲨烯 Squalene 18.27 C30H50 410.72 0.2711 56 无羁萜 Friedelan-3-One 11.98 C30H50O 426.72 0.0683 57 α-乙酸香树脂醇 Urs-12-En-3-Ol, Acetate, (3.Beta.)- 27.21 C32H52O2 468.75 0.1565 58 β-香树脂醇乙酸酯 Olean-12-En-3-Ol, Acetate, (3.Beta.)- 27.28 C32H52O2 468.75 P < 0.05 59 羊毛甾醇 (3.Beta.)-Lanosta-8,24-Dien-3-Ol 26.69 C35H50O 426.72 P < 0.05 60 乙酸环阿屯酯 9,19-Cyclolanost-24-En-3-Ol, Acetate, (3.Beta.)- 28.60 C32H52O2 468.75 P < 0.05 61 24-亚甲基环木菠萝烷醇乙酸酯
24-Methylene-9,19-cyclolanostan-3-yl acetate30.38 C33H54O2 482.78 0.1055 62 羽扇烯酮 Lupenone 23.52 C30H48O 424.70 P < 0.05 63 羽扇豆醇 3-乙酸酯 Lupeol 3-acetate 27.95 C32H52O2 468.75 P < 0.05 酚类 Phenols 64 2,4,6-三甲氧基苯乙酮 2,4,6-Trimethoxyacetophenone 9.07 C11H14O4 210.23 P < 0.05 65 4,4′-亚丁基双(6-叔丁基-3-甲基苯酚)
4,4′-Butylidenebis(6-tert-butyl-3-methylphenol)20.69 C26H38O2 382.58 0.6872 -
[1] 谢大森, 江彪, 刘文睿, 等. 优质、抗病冬瓜多样化育种研究进展 [J]. 广东农业科学, 2020, 47(11):50−59. doi: 10.16768/j.issn.1004-874x.2020.11.006XIE D S, JIANG B, LIU W R, et al. Research progress in diversification breeding of high-quality and disease-resistant on wax gourd [J]. Guangdong Agricultural Sciences, 2020, 47(11): 50−59.(in Chinese) doi: 10.16768/j.issn.1004-874x.2020.11.006 [2] 焦贤贤. 冬瓜核心种质的构建[D]. 南宁: 广西大学, 2018.JIAO X X. Construction of core germplasm of wax gourd[D]. Nanning: Guangxi University, 2018. (in Chinese) [3] 郜海燕, 楚文靖, 杨帅, 等. 植物蜡质及其对果实采后衰老进程的影响 [J]. 中国食品学报, 2014, 14(8):1−9. doi: 10.16429/j.1009-7848.2014.08.009GAO H Y, CHU W J, YANG S, et al. Effect of plant cuticle wax on postharvest fruit senescence [J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(8): 1−9.(in Chinese) doi: 10.16429/j.1009-7848.2014.08.009 [4] 杨帅. 蓝莓外表皮蜡质与果实贮藏品质的研究[D]. 金华: 浙江师范大学, 2015.YANG S. Study on waxy outer skin and fruit storage quality of blueberries[D]. Jinhua: Zhejiang Normal University, 2015. (in Chinese) [5] BELDING R D, BLANKENSHIP S M, YOUNG E, et al. Composition and variability of epicuticular waxes in apple cultivars [J]. Journal of the American Society for Horticultural Science, 1998, 123(3): 348−356. doi: 10.21273/JASHS.123.3.348 [6] 周火强, 王迪轩. 浅谈冬瓜性状遗传与育种 [J]. 长江蔬菜, 2008(05X):18−23.ZHOU H Q, WANG D. Simple discussion about character heredity and breeding of Benincasa hispida cogn [J]. Journal of Changjiang Vegetables, 2008(05X): 18−23.(in Chinese) [7] MOHAMMADIAN M A, WATLING J R, HILL R S. The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae) [J]. Acta Oecologica, 2007, 31(1): 93−101. doi: 10.1016/j.actao.2006.10.005 [8] CAMERON K D, TEECE M A, SMART L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco [J]. Plant Physiology, 2006, 140(1): 176−183. doi: 10.1104/pp.105.069724 [9] KOSMA D K, BOURDENX B, BERNARD A, et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis [J]. Plant Physiology, 2009, 151(4): 1918−1929. doi: 10.1104/pp.109.141911 [10] GAUME L, PERRET P, GORB E, et al. How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants [J]. Arthropod Structure & Development, 2004, 33(1): 103−111. [11] NAWRATH C, SCHREIBER L, FRANKE R B, et al. Apoplastic diffusion barriers in Arabidopsis [J]. The Arabidopsis Book, 2013, 11: e0167. doi: 10.1199/tab.0167 [12] DUBEY O, DUBEY S, SCHNEE S, et al. Plant surface metabolites as potent antifungal agents [J]. Plant Physiology and Biochemistry, 2020, 150: 39−48. doi: 10.1016/j.plaphy.2020.02.026 [13] SAMUELS L, KUNST L, JETTER R. Sealing plant surfaces: Cuticular wax formation by epidermal cells [J]. Annual Review of Plant Biology, 2008, 59: 683−707. doi: 10.1146/annurev.arplant.59.103006.093219 [14] SHEPHERD T , GRIFFITHS D W. The effects of stress on plant cuticular waxes [J]. New Phytologist, 2006, 171(3): 469−499. doi: 10.1111/j.1469-8137.2006.01826.x [15] ZHANG Y L, YOU C X, LI Y Y, et al. Advances in biosynthesis, regulation, and function of apple cuticular wax [J]. Frontiers in Plant Science, 2020, 11: 1165. doi: 10.3389/fpls.2020.01165 [16] BARTHLOTT W, NEINHUIS C, CUTLER D, et al. Classification and terminology of plant epicuticular waxes [J]. Botanical Journal of the Linnean Society, 1998, 126(3): 237−260. doi: 10.1111/j.1095-8339.1998.tb02529.x [17] 张曦. 大白菜蜡粉基因的精细定位及表达分析[D]. 沈阳: 沈阳农业大学, 2013.ZHANG X. Fine mapping and expression analysis of wax powder gene in Chinese cabbage[D]. Shenyang: Shenyang Agricultural University, 2013. (in Chinese) [18] 唐俊, 刘东明, 刘泽洲, 等. 几份甘蓝蜡粉缺失突变体特征特性的研究 [J]. 园艺学报, 2015, 42(6):1093−1102. doi: 10.16420/j.issn.0513-353x.2015-0048TANG J, LIU D M, LIU Z Z, et al. Studies on characteristics of several glossy mutants in cabbage [J]. Acta Horticulturae Sinica, 2015, 42(6): 1093−1102.(in Chinese) doi: 10.16420/j.issn.0513-353x.2015-0048 [19] LEIDE J, HILDEBRANDT U, REUSSING K, et al. The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: Effects of a deficiency in a beta-ketoacyl-coenzyme A synthase (LeCER6) [J]. Plant Physiology, 2007, 144(3): 1667−1679. doi: 10.1104/pp.107.099481 [20] BAUER S, SCHULTE E, THIER H P. Composition of the surface waxes from bell pepper and eggplant [J]. European Food Research and Technology, 2005, 220(1): 5−10. doi: 10.1007/s00217-004-1046-7 [21] LAVERGNE F, BROECKLING C, COCKRELL D, et al. GC-MS metabolomics to evaluate the composition of plant cuticular waxes for four Triticum aestivum cultivars [J]. International Journal of Molecular Sciences, 2018, 19(2): 249. doi: 10.3390/ijms19020249 [22] YAN J Q, CHEN F, SUN P Y, et al. Genome-wide association study and genetic mapping of BhWAX conferring mature fruit cuticular wax in wax gourd [J]. BMC Plant Biology, 2022, 22(1): 539. doi: 10.1186/s12870-022-03931-z [23] SILVA K M M D, MARIA DE FÁTIMA AGRA, SANTOS D Y A C D, et al. Leaf cuticular alkanes of Solanum subg. Leptostemonum Dunal (Bitter) of some northeast Brazilian species: Composition and taxonomic significance [J]. Biochemical Systematics and Ecology, 2012, 44: 48−52. doi: 10.1016/j.bse.2012.04.010 [24] 封文佳, 韩瑞瑞, 李嘉丽, 等. 设施番茄表皮蜡质测定及脂肪醇合成基因的表达分析 [J]. 榆林学院学报, 2020, 30(6):27−31. doi: 10.16752/j.cnki.jylu.2020.06.006FENG W J, HAN R R, LI J L, et al. Cuticular wax composition determination and expression profiles of fatty alcohols synthesis gene in tomato [J]. Journal of Yulin College, 2020, 30(6): 27−31.(in Chinese) doi: 10.16752/j.cnki.jylu.2020.06.006 [25] OLIVEIRA A F M, MEIRELLES S T, SALATINO A. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss [J]. Anais Da Academia Brasileira De Ciências, 2003, 75(4): 431−439.